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SYSTEM PROCESS

• Distributed operating system. A distributed
operating system is a software over a
collection of independent, networked,
communicating, and physically separate
computational nodes. ... The first is a
ubiquitous minimal kernel, or microkernel,
that directly controls that node's hardware.
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UNIT -II

REVIEW OF NETWORK 
OPERATING SYSTEM



DISTRIBUTED OS

• A distributed operating system is a software 
over a collection of independent, networked, 
communicating, and physically separate 
computational nodes. Each individual node 
holds a specific software subset of the global 
aggregate operating system. Each subset is a 
composite of two distinct service provisioners.
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Interprocess communication

• Interprocess communication (IPC) is a set of 
programming interfaces that allow a 
programmer to coordinate activities among 
different programprocesses that can run 
concurrently in an operating system. This 
allows a program to handle many user 
requests at the same time.



Interprocess communication



LINUX IPC

• Interprocess CommunicationMechanisms. 
Processes communicate with each other and 
with the kernel to coordinate their activities. 
... Signals and pipes are two of them 
but Linux also supports the System V IPC 
mechanisms named after the Unix TM release 
in which they first appeared.
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REMOTE PROCEDURE CALLS

• n distributed computing, a remote procedure 
call (RPC) is when a computer program causes 
a procedure(subroutine) to execute in another 
address space (commonly on another 
computer on a shared network), which is 
coded as if it were a normal (local) procedure 
call, without the programmer explicitly coding 
the details ...
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3. Synchronization in Distributed 
Systems



• In a centralized system: all processes reside on 
the same system utilize the same clock.

• In a distributed system: like synchronize 
everyone’s watch in the classroom.



Global Time

• Global Time is utilized to provide timestamps 
for processes and data. 

•  Physical clock: concerned with “People” 
time

•  Logical clock: concerned with relative 
time and maintain logical consistency



Physical Clocks

• There are two aspects: 

Obtaining an accurate value for physical time 
 Synchronizing the concept of physical time 

throughout the distributed system 

These can be implemented using centralized 
algorithms or distributed algorithms



Obtaining an Accurate Physical Time

• A physical time server is needed to access the 
current time from a universal time coordinator (UTC). 

• Two sources for UTC:

 WWV shortwave radio station in Ft. Collins, Colorado
 Geostationary Operational Environmental Satellites 

(GEOS)



Synchronizing Physical Time

• The difference in time between two clocks 
due to drifting is defined as clock skew. As 
long as any and every two clocks differ by a 
value less than the maximum skew value, the 
time service is considered to be maintaining 
synchronization.



How to synchronize two clocks in A
and B?

• The information necessary to read the value must be 
communicated across the network to location B.

• B’s clock value must be read.
• B’s clock value is communicated back to location A.
• B’s clock value is adjusted to reflect the time 

necessary to travel across the network.
• B’s clock value is compared to A’s clock value.



Centralized Physical Time Services

• Broadcast Based

• Request Driven



Broadcast Based – first approach

• The centralized time server’s action:
The physical time service broadcasts periodically the current time to 

members of the distributed systems.

• The participants’ action:
 If a given participant’s clock is ahead of the time server’s clock, the 

participant slows down its clock so that it will continually move closer to 
the accurate time.

 If a participant’s clock is behind the time server’s clock, the participant 
moves its clock forward. Alternatives do include gradually speeding up the 
clock.



For example

Current time 
= 720

Location A

Broadcast based

Time server
Current time=740

Delay of 10

Current time=720
Adjusted current time=750

New current time=750

Location A



Broadcast Based – second approach 
(Berkeley algorithm) 

Current time=720

Move forward=6

Location A
Current time=740

Adjusted location A
=730

Adjusted location B
=738

Average and the new 
current time=736

Time Server

Current time=732

Slow clock down to
accommodate 2 

Location B
1 1

2 2

4 5

1. Current time = 740
2. My current time = 720
3. My current time = 732
4. Adjust forward = 6
5. Adjust slowdown to accommodate 2

Delay=10 Delay=6



Request Driven

Current time=730

Adjusted time=750

New current time=750

Current time=740

Location A Timer Server

Request for 
current time

Current time=740
Delay=10



Distributed Physical Time Service

• Each location broadcasts its current time at predefined set 
intervals. Once a location has broadcast its time, it starts a 
timer. It then collects time messages that it receives. Each 
time message that arrives is stamped with the local current 
time. This process continues until the timer expires. Upon the 
expiration of the timer, each message is adjusted to reflect 
the network delay time estimated for the message source. At 
this stage, the participant calculates the average time 
according to one of the following approaches:



• Calculate the average of all messages

720
724
726
718
722
723

Adjusted received times



• Delete the times that are above the threshold 
and then average the rest.

760 X
724
726
718
702 X
723

Adjusted received times

The numbers besides X are deleted. 
The rest are averaged.



• Discard the highest x and the lowest x values 
and then average

760 X
724
726
718
702 X
723
703 X    
765 X

Adjusted received times



Logical Clocks

• Why Logical Clocks? 
It is difficult to utilize physical clocks to order 

events uniquely in distributed systems.
• The essence of logical clocks is based on the 

happened-before relationship presented by 
Lamport.



Happen-Before Relationship

• If two events, a and b, occurred at the same process, 
they occurred in the order of which they were 
observed. That is, a > b.

• If a sends a message to b, then a > b. That is, you 
cannot receive something before it is sent. This 
relationship holds regardless of where events a and b
occur.

• The happen-before relationship is transitive. If a happens before b and b
happens before c, then a happens before c. That is, if a > b and b > c, then 
a > c.



Logical Ordering
• If T(a) is the timestamp for event a, the following relationships must hold in a 

distributed system utilizing logical ordering.

• If two events, a and b, occurred at the same process, 
they occurred in the order of which they were 
observed. That is T(a) > T(b).

• If a sends a message to b, then T(a) > T(b).
• If a happens before b and b happens before c, T(a) > 

T(b), T(b) > T(c), and T(a) > T(c).



For example

Process 
1

Process 2

Process 3

A B

C D

E F

A>B>C>D>F          E



Lamport’s Algorithm

• Each process increments its clock counter between 
every two consecutive events. 

• If a sends a message to b, then the message must 
include T(a). Upon receiving a and T(a), the receiving 
process must set its clock to the greater of [T(a)+d, 
Current Clock]. That is, if the recipient’s clock is 
behind, it must be advanced to preserve the happen-
before relationship. Usually d=1.



For example

Process 
1

Process 2

Process 3

A(1) B(2)

C(3) D(4)

E(1) F(5)



Total Ordering with Logical Clocks

Process 
1

Process 2

Process 3

A(1.1) B(2.1)

D(4.2)

E(1.3) F(5.3)

C(3.2)

A>E>B>C>D>F



Mutual Exclusion

• In single-processor systems, critical regions 
are protected using semaphores, monitors, 
and similar constructs. 

• In distributed systems, since there is no 
shared memory, these methods cannot be 
used.



A Centralized Algorithm

• Advantages: It is fair, easy to implement, and requires only three messages 
per use of a critical region (request, grant, release). 

• Disadvantages: single point of failure.

coordinator
process Request

Grant

Enter crical
section

Exit

Release



Distributed Algorithm

REQ

REQ REQ

REQ
OK OK



Token Ring Algorithm



A Comparison of the Three 
Algorithms

Algorithm Messages 
per entry/exit

Delay 
before entry

Problems

Centralized 3 2 Coordinator crash

Distributed 2(n-1) 2(n-1) Crash of any process

Token ring 1 to ∞ 0 to n-1 Lost token, process 
crash



Election Algorithm

• The bully algorithm
• When a process notices that the coordinator is no 

longer responding to requests, it initiates an election. 
A process, P, holds an election as follows:

 P sends an ELECTION message to all processes with 
higher numbers.

 If no one responds, P wins the election and becomes 
coordinator.

 If one of the higher-ups answers, it takes over. P’s job 
is done.



For example
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• A Ring Algorithm
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Atomic Transactions

• All the synchronization techniques we have 
studied so far are essentially low level, like 
semaphores.

• What we would really like is a much higher-
level abstraction such as atomic transaction.



For example

• Atomic bank transactions:
1. Withdraw(amount, account1)
2. Deposit(amount, account2)



Stable Storage

• Stable storage is designed to survive anything 
except major calamities such as floods and 
earthquakes. 

• Stable storage can be implemented with a pair 
of ordinary disks. 

• Stable storage is well suited to applications 
that require a high degree of fault tolerance, 
such as atomic transactions.
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Transaction Primitives
• 1 BEGIN_TRANSACTION: Mark the start of a transaction.
• 2 END_TRANSACTION: Terminate the transaction and try to commit.
• 3 ABORT_TRANSACTION: Kill the transaction; restore the old values.
• 4 READ: Read data from a file (or other object).
• 5 WRITE: Write data to a file (or other object).

• For example,
• BEGIN_TRANSACTION
• reserve Austin-Houston;
• reserve Houston-Los Angeles;
• reserve Los Angeles-Seatle;
• END_TRANSCATION



Properties of Transactions

• 1 Atomic: To the outside world, the 
transaction happens indivisibly.

• 2 Consistent: The transaction does not 
violate system invariants.

• 3 Isolated: Concurrent transactions do not 
interfere with each other.
4       Durable: Once a transaction commits, 

the changes are permanent.



Isolated or serializable

• Isolated or serializable means that if two or 
more transactions are running at the same 
time, to each of them and to other processes, 
the final result looks as though all transactions 
ran sequentially in some (system dependent) 
order.



An example
• BEGIN_TRANACATION
• X = 0;
• X=X+1;
• END_TRANSACTION
• (a)
• BEGIN_TRANSACTION
• X=0;
• X= X+2;
• END_TRANSACTION
• (b)
• BEGIN_TRANSACTION
• X=0;
• X=X+3;
• END_TRANSACTION
• (c )



Schedule 1 x=0; x=x+1; x=0; x=x+2; x=0; x=x+3; legal

Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; x=x+3; legal

Schedule 3 x=0; x=0; x=x+1; x=0; x=x+2; x=x+3; illegal



Nest Transactions

• Transactions may contain subtransactions, 
often called nested transactions.

• If the subtransaction commits and the parent 
transaction aborts, the permanence applies 
only to top-level transactions.



Implementation

• Private Workspace
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• Writeahead log
x=0;                                        
y=0;
BEGIN_TRANSACTION
x=x+1;                          log: x=0/;
y=y+2;                          log: x=0/1; y=0/2;
x=y * y;                        log: x=0/1; y=0/2; x=1/4;
END_TRANSACTION



Achieving atomic commit in a 
distributed system

• Two-Phase Commit Protocol

Coordinator Subordinates
Write “Prepare” in the log
Send “Prepare” message

Write “Ready” in the log
Send “Ready” message

Collect all replies

Phase 1

Phase 2

Write log record (if all are ready, commit; if not, abort)
Send “Commit” message

Write “Commit” in the log
Commit
Send “Finished” message



Concurrency Control

• When multiple transactions are executing 
simultaneously in different processes, some 
mechanism is needed to keep them out of 
each other’s way. That mechanism is called a 
concurrency control algorithm.



Concurrency control algorithms

• Locking
 In the simplest form, when a process needs to read 

or write a file (or other object) as part of a 
transaction, it first locks the file. 

 Distinguishing read locks from write locks.
 The unit of locking can be an individual record or 

page, a file, or a larger item.  



• Two-phase locking
 The process first acquires all the locks it needs during 

the growing phase, then releases them during the 
shrinking phase.

 In many systems, the shrinking phase does not take 
place until the transaction has finished running and 
has either committed or aborted. This policy is called 
strict two-phase locking. 



Two-phase locking

Time

Growing phase Shrinking phase

Lock point

Number 
of locks



• Optimistic Concurrency Control
A second approach to handling multiple 
transactions at the same time is optimistic 
concurrency control. The idea is simple: just 
go ahead and do whatever you want to, 
without paying attention to what anybody 
else is doing. If there is a problem, worry 
about it later.



• Timestamps
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THRASHING

• If a process does not have “enough” pages, 
the page-fault rate is very high
– low CPU utilization
– OS thinks it needs increased multiprogramming
– adds another process to system

• Thrashing is when a process is busy swapping 
pages in and out



Thrashing

degree of muliprogramming
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Cause of Thrashing

• Why does paging work?
– Locality  model

• process migrates from one locality to another
• localities may overlap

• Why does thrashing occur?
– sum of localities > total memory size

• How do we fix thrashing?
– Working Set Model
– Page Fault Frequency



HETEROGENOUS DSM

• The design, implementation, and performance of
heterogeneous distributed shared memory
(HDSM) are studied. A prototype HDSM system
that integrates very different types of hosts has
been developed, and a number of applications of
this system are reported. Experience shows that
despite a number of difficulties in data
conversion, HDSM is implementable with minimal
loss in functional and performance transparency
when compared to homogeneous DSM systems



HETEROGENOUS DSM



RESOURCE MANAGEMENT

• In organizational studies, resource 
management is the efficient and effective 
development of an 
organization's resources when they are 
needed. Such resources may include 
financial resources, inventory, human skills, 
production resources, or information 
technology (IT).



RESOURCE MANAGEMENT

• DIVIDED INTO TWO TECHNIQUES
1.LOAD BALANCING APPROACH
2.LOAD SHARING APPROACH



Load-balancing approach
Type of dynamic load-balancing algorithms

• Centralized versus Distributed
– Centralized approach collects information to 

server node and makes assignment decision
– Distributed approach contains entities to make 

decisions on a predefined set of nodes
– Centralized algorithms can make efficient 

decisions, have lower fault-tolerance
– Distributed algorithms avoid the bottleneck of 

collecting state information and react faster

130



Load-balancing approach
Type of distributed load-balancing algorithms

• Cooperative versus Noncooperative
– In Noncooperative algorithms entities act as 

autonomous ones and make scheduling decisions 
independently from other entities

– In Cooperative algorithms distributed entities 
cooperatewith each other

– Cooperative algorithms are more complex and 
involve larger overhead

– Stability of Cooperative algorithms are better
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Load-sharing approach
• Drawbacks of Load-balancing approach

– Load balancing technique with attempting equalizing the workload on
all the nodes is not an appropriate object since big overhead is
generated by gathering exact state information

– Load balancing is not achievable since number of processes in a node
is always fluctuating and temporal unbalance among the nodes exists
every moment

• Basic ideas for Load-sharing approach
– It is necessary and sufficient to prevent nodes from being idle while

some other nodes have more than two processes
– Load-sharing is much simpler than load-balancing since it only

attempts to ensure that no node is idle when heavily node exists
– Priority assignment policy and migration limiting policy are the same

as that for the load-balancing algorithms
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Load estimation policies
for Load-sharing algorithms

• Since load-sharing algorithms simply attempt to
avoid idle nodes, it is sufficient to know whether a
node is busy or idle

• Thus these algorithms normally employ the simplest
load estimation policy of counting the total number
of processes

• In modern systems where permanent existence of
several processes on an idle node is possible,
algorithms measure CPU utilization to estimate the
load of a node

133



Location policies I.
for Load-sharing algorithms

• Location policy decides whether the sender node or the
receiver node of the process takes the initiative to search for
suitable node in the system, and this policy can be the
following:
– Sender-initiated location policy

• Sender node decides where to send the process
• Heavily loaded nodes search for lightly loaded nodes

– Receiver-initiated location policy
• Receiver node decides from where to get the process
• Lightly loaded nodes search for heavily loaded nodes
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• Process Migration refers to the mobility of
executing (or suspended) processes in
a distributed computing environment. Usually,
this term indicates that a processuses a
network to migrate to another machine to
continue its execution there.



PROCESS MANAGEMENT
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• Multithreading. Multithreading is mainly
found in multitasking operating systems.
Multithreading is a widespread programming
and execution model that allows multiple
threads to exist within the context of one
process. These threads share the process's
resources, but are able to execute
independently.



THREAD
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• Responsiveness: multithreading can allow an
application to remain responsive to input. In a one-
thread program, if the main execution thread blocks on
a long-running task, the entire application can appear
to freeze. By moving such long-running tasks to
a worker thread that runs concurrently with the main
execution thread, it is possible for the application to
remain responsive to user input while executing tasks
in the background. On the other hand, in most cases
multithreading is not the only way to keep a program
responsive, with non-blocking I/O and/or UniX
signals being available for gaining similar results



THREAD
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• Faster execution: this advantage of a
multithreaded program allows it to operate
faster on computer systems that have
multiple central processing units (CPUs) or
one or more multi-core processors, or across
a clusterof machines, because the threads of
the program naturally lend themselves to
parallel execution, assuming sufficient
independence (that they do not need to wait
for each other).



THREAD
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• Parallelization: applications looking to use 
multicore or multi-CPU systems can use 
multithreading to split data and tasks into parallel 
subtasks and let the underlying architecture 
manage how the threads run, either concurrently 
on one core or in parallel on multiple cores. GPU 
computing environments 
like CUDA and OpenCLuse the multithreading 
model where dozens to hundreds of threads run 
in parallel across data on a large number of cores.



UNIT -IV

OVERVIEW OF SHARED 
MEMORY



CONSISTENCY MODEL

• A memory consistency model only applies to
systems that allow multiple copies
ofshared data; e.g., through caching....
Other aspects include the order in which a
processor issues memory operations to
the memory system, and whether a write
executes atomically.



CONSISTENCY MODEL
• In describing the behavior of these memory models, we are only interested in the shared memory behavior - not 

anything else related to the programs. We aren't interested in control flow within the programs, data 
manipulations within the programs, or behavior related to local (in the sense of non-shared) variables. There is a 
stnadard notation for this, which we'll be using in what follows.

• In the notation, there will be a line for each processor in the system, and time proceeds from left to right. Each 
shared-memory operation performed will appear on the processor's line. The two main operations are Read and 
Write, which are expressed as

• W(var)value which means "write value to shared variable var", and
• R(var)value which means "read shared variable var, obtaining value."
• So, for instance, W(x)1 means "write a 1 to x" and R(y)3 means "read y, and get the value 3."
• More operations (especially synchronization operations) will be defined as we go on. For simplicity, variables are 

assumed to be initialized to 0.
• An important thing to notice about this is that a single high-level language statement (like x = x + 1;) will typically 

appear as several memory operations. If x previously had a value of 0, then that statement becomes (in the 
absence of any other processors)

• P1: R(x)0 W(x)1 -----------------
• On a RISC-style processor, it's likely that C statement would have turned into three instructions: a load, an add, 

and a store. Of those three instructions, two affect memory and are shown in the diagram.
• On a CISC-style processor, the statement would probably have turned into a single, in-memory add instruction. 

Even so, the processor would have executed the instruction by reading memory, doing the addition, and then 
writing memory, so it would still appear as two memory operations.

• Notice that the actual memory operations performed could equally well have been performed by some 
completely different high level language code; maybe an if-then-else statement that checked and then set a flag. If 
I ask for memory operations and there is anything in your answer that looks like a transformation or something of 
the data, then something is wrong!



CONSISTENCY MODEL
• Strict Consistency
• The intuitive notion of memory consistency is the strict consistency model. In the strict model, any read to 

a memory location X returns the value stored by the most recent write operation to X. If we have a 
bunch of processors, with no caches, talking to memory through a bus then we will have strict consistency. 
The point here is the precise serialization of all memory accesses.

• We can give an example of what is, and what is not, strict consistency and also show an example of the 
notation for operations in the memory system. As we said before, we assume that all variables have a value 
of 0 before we begin. An example of a scenario that would be valid under the strict consistency model is the 
following:

• P1: W(x)1 ----------------------- P2: R(x)1 R(x)1 
• This says, ``processor P1 writes a value of 1 to variable x; at some later time processor P2 reads x and 

obtains a value of 1. Then it reads it again and gets the same value''
• Here's another scenario which would be valid under strict consistency:
• P1: W(x)1 ------------------------------- P2: R(x)0 R(x)1 
• This time, P2 got a little ahead of P1; its first read of x got a value of 0, while its second read got the 1 that 

was written by P1. Notice that these two scenarios could be obtained in two runs of the same program on 
the same processors.

• Here's a scenario which would not be valid under strict consistency:
• P1: W(x)1 ----------------------- P2: R(x)0 R(x)1 
• In this scenario, the new value of x had not been propagated to P2 yet when it did its first read, but it did 

reach it eventually.
• I've also seen this model called atomic consistency.



CONSISTENCY MODEL
• Sequential Consistency
• Sequential consistency is a slightly weaker model than strict consistency. It was defined by 

Lamport as the result of any execution is the same as if the reads and writes occurred in 
some order, and the operations of each individual processor appear in this sequence in 
the order specified by its program.

• In essence, any ordering that could have been produced by a strict ordering regardless of 
processor speeds is valid under sequential consistency. The idea is that by expanding from the 
sets of reads and writes that actually happened to the sets that could have happened, we can 
reason more effectively about the program (since we can ask the far more useful question, 
"could the program have broken?"). We can reason about the program itself, with less 
interference from the details of the hardware on which it is running. It's probably fair to say 
that if we have a computer system that really uses strict consistency, we'll want to reason 
about it using sequential consistency
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SHARED MEMORY

• In computer science, distributed shared 
memory(DSM) is a form 
of memory architecture where physically 
separated memories can be addressed as one 
logically shared address space.
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VARIABLE BASED SHARED MEMORY
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FILE REPLICATION

• There are three basic replication models the 
• master-slave
• client-server 
• peer-to-peer models.



FILE REPLICATION
• Master-slave model 

In this model one of the copy is the master replica and
all the other copies are slaves. The slaves should always
be identical to the master. In this model the
functionality of the slaves are very limited, thus the
configuration is very simple. The slaves essentially are
read-only. Most of the master-slaves services ignore all
the updates or modifications performed at the slave,
and “undo” the update during synchronization, making
the slave identical to the master [3]. The modifications
or the updates can be reliably performed at the master
and the slaves must synchronize directly with the
master.



FILE REPLICATION



FILE REPLICATION
• Peer-to-peer model The Peer-to-peer model is very different from both the master-slave and 

the client-server models. Here all the replicas or the copies are of equal importance or they are 
all peers. In this model any replica can synchronize with any other replica, and any file system 
modification or update can be applied at any replica. Optimistic replication can use a peer-to-
peer model. Peer-to-peer systems allow any replica to propagate updates to any other replicas 
[11]. The peer-to-peer model has been implemented in Locus, Rumor and in other distributed 
environments such as xFS in the NOW project. Peer-to-peer systems can propagate updates 
faster by making use of any available connectivity. They provide a very rich and robust 
communication framework. But they are more complex in implementation and in the states 
they can achieve [11]. One more problem with this model is scalability. Peer models are 
implemented by storing all necessary replication knowledge at every site thus each replica has 
full knowledge about everyone else. As synchronization and communication is allowed 
between any replicas, this results in exceedingly large replicated data structures and clearly 
does not scale well. Additionally, distributed algorithms that determine global state must, by 
definition, communicate with or hear about (via gossiping) each replica at least once and 
often twice. Since all replicas are peers, any single machine could potentially affect the 
outcome of such distributed algorithms; therefore each must participate before the algorithm 
can complete, again leading to potential scaling problems [3]. Simulation studies in the file 
system arena have demonstrated that the peer model increases the speed of update 
propagation among a set of replicas, decreasing the frequency of using an outdated version of 
the data
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• Fault tolerance is the property that enables 
a system to continue operating properly in the event 
of the failure of (or one or more faults within) some 
of its components.



FAULT TOLERANCE



FAULT TOLERANCE



FAULT TOLERANCE



NETWORK FILE SHARING

• A Network File System (NFS) allows remote hosts to 
mount file systems over a network and interact with 
those file systems as though they are mounted locally. 
This enables system administrators to consolidate 
resources onto centralized servers on the network.

• This chapter focuses on fundamental NFS concepts and 
supplemental information. For specific instructions 
regarding the configuration and operation of NFS 
server and client software, refer to the chapter 
titled Network File System (NFS) in the Red Hat 
Enterprise Linux System Administration Guide.
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• Required Services
• Red Hat Enterprise Linux uses a combination of kernel-level support and daemon processes to provide NFS file 

sharing. NFS relies on Remote Procedure Calls (RPC) to route requests between clients and servers . RPC services 
under Linux are controlled by the portmap service. To share or mount NFS file systems, the following services work 
together:

• nfs — Starts the appropriate RPC processes to service requests for shared NFS file systems.
• nfslock — An optional service that starts the appropriate RPC processes to allow NFS clients to lock files on the 

server.
• portmap — The RPC service for Linux; it responds to requests for RPC services and sets up connections to the 

requested RPC service.
• The following RPC processes work together behind the scenes to facilitate NFS services:
• rpc.mountd — This process receives mount requests from NFS clients and verifies the requested file system is 

currently exported. This process is started automatically by the nfs service and does not require user 
configuration.

• rpc.nfsd — This process is the NFS server. It works with the Linux kernel to meet the dynamic demands of NFS 
clients, such as providing server threads each time an NFS client connects. This process corresponds to 
the nfs service.

• rpc.lockd — An optional process that allows NFS clients to lock files on the server. This process corresponds to 
the nfslock service.

• rpc.statd — This process implements the Network Status Monitor (NSM) RPC protocol which notifies NFS clients 
when an NFS server is restarted without being gracefully brought down. This process is started automatically by 
the nfslock service and does not require user configuration.

• rpc.rquotad — This process provides user quota information for remote users. This process is started 
automatically by the nfs service and does not require user configuration.
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• Troubleshooting NFS and portmap
• Because portmap provides coordination between 

RPC services and the port numbers used to 
communicate with them, it is useful to view the 
status of current RPC services 
usingportmap when troubleshooting. 
The rpcinfo command shows each RPC-based 
service with port numbers, an RPC program 
number, a version and an IP protocol type (TCP or 
UDP).


