
UNIT-I

MODES OF
COMMUNICATION

SYSTEM PROCESS

• Distributed operating system. A distributed
operating system is a software over a
collection of independent, networked,
communicating, and physically separate
computational nodes. ... The first is a
ubiquitous minimal kernel, or microkernel,
that directly controls that node's hardware.

INTERRUPT HANDLING

INTERRUPT HANDLING

INTERRUPT HANDLING

INTERRUPT HANDLING

INTERRUPT HANDLING

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

HANDLING SYSTEM CALLS

PROTECTION OF RESOURCES

PROTECTION OF RESOURCES

PROTECTION OF RESOURCES

PROTECTION OF RESOURCES

RESOURCES MANAGEMENT

MICRO- KERNEL

MICRO- KERNEL

MICRO- KERNEL

MICRO- KERNEL

MICRO- KERNEL

MICRO- KERNEL

MICRO- KERNEL

UNIT -II

REVIEW OF NETWORK
OPERATING SYSTEM

DISTRIBUTED OS

• A distributed operating system is a software
over a collection of independent, networked,
communicating, and physically separate
computational nodes. Each individual node
holds a specific software subset of the global
aggregate operating system. Each subset is a
composite of two distinct service provisioners.

DISTRIBUTED OS

DISTRIBUTED OS

DISTRIBUTED OS

DISTRIBUTED OS

DISTRIBUTED OS

DISTRIBUTED OS

COMPUTER N/W

COMPUTER N/W

COMPUTER N/W

COMPUTER N/W

COMPUTER N/W

COMPUTER N/W

COMPUTER N/W

COMPUTER N/W

Interprocess communication

• Interprocess communication (IPC) is a set of
programming interfaces that allow a
programmer to coordinate activities among
different programprocesses that can run
concurrently in an operating system. This
allows a program to handle many user
requests at the same time.

Interprocess communication

LINUX IPC

• Interprocess CommunicationMechanisms.
Processes communicate with each other and
with the kernel to coordinate their activities.
... Signals and pipes are two of them
but Linux also supports the System V IPC
mechanisms named after the Unix TM release
in which they first appeared.

LINUX IPC

LINUX IPC

LINUX IPC

LINUX IPC

REMOTE PROCEDURE CALLS

• n distributed computing, a remote procedure
call (RPC) is when a computer program causes
a procedure(subroutine) to execute in another
address space (commonly on another
computer on a shared network), which is
coded as if it were a normal (local) procedure
call, without the programmer explicitly coding
the details ...

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

REMOTE PROCEDURE CALLS

3. Synchronization in Distributed
Systems

• In a centralized system: all processes reside on
the same system utilize the same clock.

• In a distributed system: like synchronize
everyone’s watch in the classroom.

Global Time

• Global Time is utilized to provide timestamps
for processes and data.

• Physical clock: concerned with “People”
time

• Logical clock: concerned with relative
time and maintain logical consistency

Physical Clocks

• There are two aspects:

Obtaining an accurate value for physical time
 Synchronizing the concept of physical time

throughout the distributed system

These can be implemented using centralized
algorithms or distributed algorithms

Obtaining an Accurate Physical Time

• A physical time server is needed to access the
current time from a universal time coordinator (UTC).

• Two sources for UTC:

 WWV shortwave radio station in Ft. Collins, Colorado
 Geostationary Operational Environmental Satellites

(GEOS)

Synchronizing Physical Time

• The difference in time between two clocks
due to drifting is defined as clock skew. As
long as any and every two clocks differ by a
value less than the maximum skew value, the
time service is considered to be maintaining
synchronization.

How to synchronize two clocks in A
and B?

• The information necessary to read the value must be
communicated across the network to location B.

• B’s clock value must be read.
• B’s clock value is communicated back to location A.
• B’s clock value is adjusted to reflect the time

necessary to travel across the network.
• B’s clock value is compared to A’s clock value.

Centralized Physical Time Services

• Broadcast Based

• Request Driven

Broadcast Based – first approach

• The centralized time server’s action:
The physical time service broadcasts periodically the current time to

members of the distributed systems.

• The participants’ action:
 If a given participant’s clock is ahead of the time server’s clock, the

participant slows down its clock so that it will continually move closer to
the accurate time.

 If a participant’s clock is behind the time server’s clock, the participant
moves its clock forward. Alternatives do include gradually speeding up the
clock.

For example

Current time
= 720

Location A

Broadcast based

Time server
Current time=740

Delay of 10

Current time=720
Adjusted current time=750

New current time=750

Location A

Broadcast Based – second approach
(Berkeley algorithm)

Current time=720

Move forward=6

Location A
Current time=740

Adjusted location A
=730

Adjusted location B
=738

Average and the new
current time=736

Time Server

Current time=732

Slow clock down to
accommodate 2

Location B
1 1

2 2

4 5

1. Current time = 740
2. My current time = 720
3. My current time = 732
4. Adjust forward = 6
5. Adjust slowdown to accommodate 2

Delay=10 Delay=6

Request Driven

Current time=730

Adjusted time=750

New current time=750

Current time=740

Location A Timer Server

Request for
current time

Current time=740
Delay=10

Distributed Physical Time Service

• Each location broadcasts its current time at predefined set
intervals. Once a location has broadcast its time, it starts a
timer. It then collects time messages that it receives. Each
time message that arrives is stamped with the local current
time. This process continues until the timer expires. Upon the
expiration of the timer, each message is adjusted to reflect
the network delay time estimated for the message source. At
this stage, the participant calculates the average time
according to one of the following approaches:

• Calculate the average of all messages

720
724
726
718
722
723

Adjusted received times

• Delete the times that are above the threshold
and then average the rest.

760 X
724
726
718
702 X
723

Adjusted received times

The numbers besides X are deleted.
The rest are averaged.

• Discard the highest x and the lowest x values
and then average

760 X
724
726
718
702 X
723
703 X
765 X

Adjusted received times

Logical Clocks

• Why Logical Clocks?
It is difficult to utilize physical clocks to order

events uniquely in distributed systems.
• The essence of logical clocks is based on the

happened-before relationship presented by
Lamport.

Happen-Before Relationship

• If two events, a and b, occurred at the same process,
they occurred in the order of which they were
observed. That is, a > b.

• If a sends a message to b, then a > b. That is, you
cannot receive something before it is sent. This
relationship holds regardless of where events a and b
occur.

• The happen-before relationship is transitive. If a happens before b and b
happens before c, then a happens before c. That is, if a > b and b > c, then
a > c.

Logical Ordering
• If T(a) is the timestamp for event a, the following relationships must hold in a

distributed system utilizing logical ordering.

• If two events, a and b, occurred at the same process,
they occurred in the order of which they were
observed. That is T(a) > T(b).

• If a sends a message to b, then T(a) > T(b).
• If a happens before b and b happens before c, T(a) >

T(b), T(b) > T(c), and T(a) > T(c).

For example

Process
1

Process 2

Process 3

A B

C D

E F

A>B>C>D>F E

Lamport’s Algorithm

• Each process increments its clock counter between
every two consecutive events.

• If a sends a message to b, then the message must
include T(a). Upon receiving a and T(a), the receiving
process must set its clock to the greater of [T(a)+d,
Current Clock]. That is, if the recipient’s clock is
behind, it must be advanced to preserve the happen-
before relationship. Usually d=1.

For example

Process
1

Process 2

Process 3

A(1) B(2)

C(3) D(4)

E(1) F(5)

Total Ordering with Logical Clocks

Process
1

Process 2

Process 3

A(1.1) B(2.1)

D(4.2)

E(1.3) F(5.3)

C(3.2)

A>E>B>C>D>F

Mutual Exclusion

• In single-processor systems, critical regions
are protected using semaphores, monitors,
and similar constructs.

• In distributed systems, since there is no
shared memory, these methods cannot be
used.

A Centralized Algorithm

• Advantages: It is fair, easy to implement, and requires only three messages
per use of a critical region (request, grant, release).

• Disadvantages: single point of failure.

coordinator
process Request

Grant

Enter crical
section

Exit

Release

Distributed Algorithm

REQ

REQ REQ

REQ
OK OK

Token Ring Algorithm

A Comparison of the Three
Algorithms

Algorithm Messages
per entry/exit

Delay
before entry

Problems

Centralized 3 2 Coordinator crash

Distributed 2(n-1) 2(n-1) Crash of any process

Token ring 1 to ∞ 0 to n-1 Lost token, process
crash

Election Algorithm

• The bully algorithm
• When a process notices that the coordinator is no

longer responding to requests, it initiates an election.
A process, P, holds an election as follows:

 P sends an ELECTION message to all processes with
higher numbers.

 If no one responds, P wins the election and becomes
coordinator.

 If one of the higher-ups answers, it takes over. P’s job
is done.

For example

7
1

2

45

36 Election

7
1

2

45

36

Ok

7
1

2

45

36 Election

7
1

2

45

36 Ok

7
1

2

45

36 Coordinator

• A Ring Algorithm

1
2

4
5

3

7

6

2

2 3

2 3 4 2 3 4 5

2 3 4 5 6

2 3 4 5 6 1

6

Atomic Transactions

• All the synchronization techniques we have
studied so far are essentially low level, like
semaphores.

• What we would really like is a much higher-
level abstraction such as atomic transaction.

For example

• Atomic bank transactions:
1. Withdraw(amount, account1)
2. Deposit(amount, account2)

Stable Storage

• Stable storage is designed to survive anything
except major calamities such as floods and
earthquakes.

• Stable storage can be implemented with a pair
of ordinary disks.

• Stable storage is well suited to applications
that require a high degree of fault tolerance,
such as atomic transactions.

s a
o h

t f
b w

s a

t f
b w

s a’
o h

t f
b w

s a

t f
b w

s a
o h

t f
b w

s a

t f
b w

Stable storage Stable storage Stable storage

Drive 1

Drive 2

(a) Stable storage (b) Crash after drive 1 is updated © Bad spot

Transaction Primitives
• 1 BEGIN_TRANSACTION: Mark the start of a transaction.
• 2 END_TRANSACTION: Terminate the transaction and try to commit.
• 3 ABORT_TRANSACTION: Kill the transaction; restore the old values.
• 4 READ: Read data from a file (or other object).
• 5 WRITE: Write data to a file (or other object).

• For example,
• BEGIN_TRANSACTION
• reserve Austin-Houston;
• reserve Houston-Los Angeles;
• reserve Los Angeles-Seatle;
• END_TRANSCATION

Properties of Transactions

• 1 Atomic: To the outside world, the
transaction happens indivisibly.

• 2 Consistent: The transaction does not
violate system invariants.

• 3 Isolated: Concurrent transactions do not
interfere with each other.
4 Durable: Once a transaction commits,

the changes are permanent.

Isolated or serializable

• Isolated or serializable means that if two or
more transactions are running at the same
time, to each of them and to other processes,
the final result looks as though all transactions
ran sequentially in some (system dependent)
order.

An example
• BEGIN_TRANACATION
• X = 0;
• X=X+1;
• END_TRANSACTION
• (a)
• BEGIN_TRANSACTION
• X=0;
• X= X+2;
• END_TRANSACTION
• (b)
• BEGIN_TRANSACTION
• X=0;
• X=X+3;
• END_TRANSACTION
• (c)

Schedule 1 x=0; x=x+1; x=0; x=x+2; x=0; x=x+3; legal

Schedule 2 x=0; x=0; x=x+1; x=x+2; x=0; x=x+3; legal

Schedule 3 x=0; x=0; x=x+1; x=0; x=x+2; x=x+3; illegal

Nest Transactions

• Transactions may contain subtransactions,
often called nested transactions.

• If the subtransaction commits and the parent
transaction aborts, the permanence applies
only to top-level transactions.

Implementation

• Private Workspace

1 02

0
1
2

1 02 1 2

Index

0’ 3’ 0 3

Index
Index

0
1
2

0’
1
2
3’

0
1
2
3

Private workspace

• Writeahead log
x=0;
y=0;
BEGIN_TRANSACTION
x=x+1; log: x=0/;
y=y+2; log: x=0/1; y=0/2;
x=y * y; log: x=0/1; y=0/2; x=1/4;
END_TRANSACTION

Achieving atomic commit in a
distributed system

• Two-Phase Commit Protocol

Coordinator Subordinates
Write “Prepare” in the log
Send “Prepare” message

Write “Ready” in the log
Send “Ready” message

Collect all replies

Phase 1

Phase 2

Write log record (if all are ready, commit; if not, abort)
Send “Commit” message

Write “Commit” in the log
Commit
Send “Finished” message

Concurrency Control

• When multiple transactions are executing
simultaneously in different processes, some
mechanism is needed to keep them out of
each other’s way. That mechanism is called a
concurrency control algorithm.

Concurrency control algorithms

• Locking
 In the simplest form, when a process needs to read

or write a file (or other object) as part of a
transaction, it first locks the file.

 Distinguishing read locks from write locks.
 The unit of locking can be an individual record or

page, a file, or a larger item.

• Two-phase locking
 The process first acquires all the locks it needs during

the growing phase, then releases them during the
shrinking phase.

 In many systems, the shrinking phase does not take
place until the transaction has finished running and
has either committed or aborted. This policy is called
strict two-phase locking.

Two-phase locking

Time

Growing phase Shrinking phase

Lock point

Number
of locks

• Optimistic Concurrency Control
A second approach to handling multiple
transactions at the same time is optimistic
concurrency control. The idea is simple: just
go ahead and do whatever you want to,
without paying attention to what anybody
else is doing. If there is a problem, worry
about it later.

• Timestamps

TRD TWR T

() () ()

TWR TRD T

() () ()

Write

TRDT
()()

TWRT
()()

Do tentative
write

Abort

AbortDo tenative
write

TWRT
()()

TTENTT
()()

Abort

Read

T
() ()

TTENT

()()

TWR

T
()

TWR

Ok

Wait

Abort

THRASHING

• If a process does not have “enough” pages,
the page-fault rate is very high
– low CPU utilization
– OS thinks it needs increased multiprogramming
– adds another process to system

• Thrashing is when a process is busy swapping
pages in and out

Thrashing

degree of muliprogramming

CP
U

ut
ili

za
tio

n

Cause of Thrashing

• Why does paging work?
– Locality model

• process migrates from one locality to another
• localities may overlap

• Why does thrashing occur?
– sum of localities > total memory size

• How do we fix thrashing?
– Working Set Model
– Page Fault Frequency

HETEROGENOUS DSM

• The design, implementation, and performance of
heterogeneous distributed shared memory
(HDSM) are studied. A prototype HDSM system
that integrates very different types of hosts has
been developed, and a number of applications of
this system are reported. Experience shows that
despite a number of difficulties in data
conversion, HDSM is implementable with minimal
loss in functional and performance transparency
when compared to homogeneous DSM systems

HETEROGENOUS DSM

RESOURCE MANAGEMENT

• In organizational studies, resource
management is the efficient and effective
development of an
organization's resources when they are
needed. Such resources may include
financial resources, inventory, human skills,
production resources, or information
technology (IT).

RESOURCE MANAGEMENT

• DIVIDED INTO TWO TECHNIQUES
1.LOAD BALANCING APPROACH
2.LOAD SHARING APPROACH

Load-balancing approach
Type of dynamic load-balancing algorithms

• Centralized versus Distributed
– Centralized approach collects information to

server node and makes assignment decision
– Distributed approach contains entities to make

decisions on a predefined set of nodes
– Centralized algorithms can make efficient

decisions, have lower fault-tolerance
– Distributed algorithms avoid the bottleneck of

collecting state information and react faster

130

Load-balancing approach
Type of distributed load-balancing algorithms

• Cooperative versus Noncooperative
– In Noncooperative algorithms entities act as

autonomous ones and make scheduling decisions
independently from other entities

– In Cooperative algorithms distributed entities
cooperatewith each other

– Cooperative algorithms are more complex and
involve larger overhead

– Stability of Cooperative algorithms are better

131

Load-sharing approach
• Drawbacks of Load-balancing approach

– Load balancing technique with attempting equalizing the workload on
all the nodes is not an appropriate object since big overhead is
generated by gathering exact state information

– Load balancing is not achievable since number of processes in a node
is always fluctuating and temporal unbalance among the nodes exists
every moment

• Basic ideas for Load-sharing approach
– It is necessary and sufficient to prevent nodes from being idle while

some other nodes have more than two processes
– Load-sharing is much simpler than load-balancing since it only

attempts to ensure that no node is idle when heavily node exists
– Priority assignment policy and migration limiting policy are the same

as that for the load-balancing algorithms

132

Load estimation policies
for Load-sharing algorithms

• Since load-sharing algorithms simply attempt to
avoid idle nodes, it is sufficient to know whether a
node is busy or idle

• Thus these algorithms normally employ the simplest
load estimation policy of counting the total number
of processes

• In modern systems where permanent existence of
several processes on an idle node is possible,
algorithms measure CPU utilization to estimate the
load of a node

133

Location policies I.
for Load-sharing algorithms

• Location policy decides whether the sender node or the
receiver node of the process takes the initiative to search for
suitable node in the system, and this policy can be the
following:
– Sender-initiated location policy

• Sender node decides where to send the process
• Heavily loaded nodes search for lightly loaded nodes

– Receiver-initiated location policy
• Receiver node decides from where to get the process
• Lightly loaded nodes search for heavily loaded nodes

134

PROCESS MANAGEMENT

135

PROCESS MANAGEMENT

136

PROCESS MANAGEMENT

137

• Process Migration refers to the mobility of
executing (or suspended) processes in
a distributed computing environment. Usually,
this term indicates that a processuses a
network to migrate to another machine to
continue its execution there.

PROCESS MANAGEMENT

138

PROCESS MANAGEMENT

139

THREAD

140

• Multithreading. Multithreading is mainly
found in multitasking operating systems.
Multithreading is a widespread programming
and execution model that allows multiple
threads to exist within the context of one
process. These threads share the process's
resources, but are able to execute
independently.

THREAD

141

THREAD

142

THREAD

143

• Responsiveness: multithreading can allow an
application to remain responsive to input. In a one-
thread program, if the main execution thread blocks on
a long-running task, the entire application can appear
to freeze. By moving such long-running tasks to
a worker thread that runs concurrently with the main
execution thread, it is possible for the application to
remain responsive to user input while executing tasks
in the background. On the other hand, in most cases
multithreading is not the only way to keep a program
responsive, with non-blocking I/O and/or UniX
signals being available for gaining similar results

THREAD

144

• Faster execution: this advantage of a
multithreaded program allows it to operate
faster on computer systems that have
multiple central processing units (CPUs) or
one or more multi-core processors, or across
a clusterof machines, because the threads of
the program naturally lend themselves to
parallel execution, assuming sufficient
independence (that they do not need to wait
for each other).

THREAD

145

• Parallelization: applications looking to use
multicore or multi-CPU systems can use
multithreading to split data and tasks into parallel
subtasks and let the underlying architecture
manage how the threads run, either concurrently
on one core or in parallel on multiple cores. GPU
computing environments
like CUDA and OpenCLuse the multithreading
model where dozens to hundreds of threads run
in parallel across data on a large number of cores.

UNIT -IV

OVERVIEW OF SHARED
MEMORY

CONSISTENCY MODEL

• A memory consistency model only applies to
systems that allow multiple copies
ofshared data; e.g., through caching....
Other aspects include the order in which a
processor issues memory operations to
the memory system, and whether a write
executes atomically.

CONSISTENCY MODEL
• In describing the behavior of these memory models, we are only interested in the shared memory behavior - not

anything else related to the programs. We aren't interested in control flow within the programs, data
manipulations within the programs, or behavior related to local (in the sense of non-shared) variables. There is a
stnadard notation for this, which we'll be using in what follows.

• In the notation, there will be a line for each processor in the system, and time proceeds from left to right. Each
shared-memory operation performed will appear on the processor's line. The two main operations are Read and
Write, which are expressed as

• W(var)value which means "write value to shared variable var", and
• R(var)value which means "read shared variable var, obtaining value."
• So, for instance, W(x)1 means "write a 1 to x" and R(y)3 means "read y, and get the value 3."
• More operations (especially synchronization operations) will be defined as we go on. For simplicity, variables are

assumed to be initialized to 0.
• An important thing to notice about this is that a single high-level language statement (like x = x + 1;) will typically

appear as several memory operations. If x previously had a value of 0, then that statement becomes (in the
absence of any other processors)

• P1: R(x)0 W(x)1 -----------------
• On a RISC-style processor, it's likely that C statement would have turned into three instructions: a load, an add,

and a store. Of those three instructions, two affect memory and are shown in the diagram.
• On a CISC-style processor, the statement would probably have turned into a single, in-memory add instruction.

Even so, the processor would have executed the instruction by reading memory, doing the addition, and then
writing memory, so it would still appear as two memory operations.

• Notice that the actual memory operations performed could equally well have been performed by some
completely different high level language code; maybe an if-then-else statement that checked and then set a flag. If
I ask for memory operations and there is anything in your answer that looks like a transformation or something of
the data, then something is wrong!

CONSISTENCY MODEL
• Strict Consistency
• The intuitive notion of memory consistency is the strict consistency model. In the strict model, any read to

a memory location X returns the value stored by the most recent write operation to X. If we have a
bunch of processors, with no caches, talking to memory through a bus then we will have strict consistency.
The point here is the precise serialization of all memory accesses.

• We can give an example of what is, and what is not, strict consistency and also show an example of the
notation for operations in the memory system. As we said before, we assume that all variables have a value
of 0 before we begin. An example of a scenario that would be valid under the strict consistency model is the
following:

• P1: W(x)1 ----------------------- P2: R(x)1 R(x)1
• This says, ``processor P1 writes a value of 1 to variable x; at some later time processor P2 reads x and

obtains a value of 1. Then it reads it again and gets the same value''
• Here's another scenario which would be valid under strict consistency:
• P1: W(x)1 ------------------------------- P2: R(x)0 R(x)1
• This time, P2 got a little ahead of P1; its first read of x got a value of 0, while its second read got the 1 that

was written by P1. Notice that these two scenarios could be obtained in two runs of the same program on
the same processors.

• Here's a scenario which would not be valid under strict consistency:
• P1: W(x)1 ----------------------- P2: R(x)0 R(x)1
• In this scenario, the new value of x had not been propagated to P2 yet when it did its first read, but it did

reach it eventually.
• I've also seen this model called atomic consistency.

CONSISTENCY MODEL
• Sequential Consistency
• Sequential consistency is a slightly weaker model than strict consistency. It was defined by

Lamport as the result of any execution is the same as if the reads and writes occurred in
some order, and the operations of each individual processor appear in this sequence in
the order specified by its program.

• In essence, any ordering that could have been produced by a strict ordering regardless of
processor speeds is valid under sequential consistency. The idea is that by expanding from the
sets of reads and writes that actually happened to the sets that could have happened, we can
reason more effectively about the program (since we can ask the far more useful question,
"could the program have broken?"). We can reason about the program itself, with less
interference from the details of the hardware on which it is running. It's probably fair to say
that if we have a computer system that really uses strict consistency, we'll want to reason
about it using sequential consistency

CONSISTENCY MODEL

CONSISTENCY MODEL

SHARED MEMORY

• In computer science, distributed shared
memory(DSM) is a form
of memory architecture where physically
separated memories can be addressed as one
logically shared address space.

SHARED MEMORY

SHARED MEMORY

SHARED MEMORY

SHARED MEMORY

SHARED MEMORY

SHARED MEMORY

SHARED MEMORY

SHARED MEMORY

VARIABLE BASED SHARED MEMORY

VARIABLE BASED SHARED MEMORY

VARIABLE BASED SHARED MEMORY

VARIABLE BASED SHARED MEMORY

VARIABLE BASED SHARED MEMORY

OBJECT BASED SHARED MEMORY

OBJECT BASED SHARED MEMORY

OBJECT BASED SHARED MEMORY

OBJECT BASED SHARED MEMORY

OBJECT BASED SHARED MEMORY

UNIT -V

FILE MODELS

FILE ACCESS

FILE ACCESS

FILE ACCESS

FILE ACCESS

FILE SHARING

FILE SHARING

FILE SHARING

FILE SHARING

FILE CACHING

FILE CACHING

FILE CACHING

FILE CACHING

FILE CACHING

FILE CACHING

FILE CACHING

FILE CACHING

FILE REPLICATION

• There are three basic replication models the
• master-slave
• client-server
• peer-to-peer models.

FILE REPLICATION
• Master-slave model

In this model one of the copy is the master replica and
all the other copies are slaves. The slaves should always
be identical to the master. In this model the
functionality of the slaves are very limited, thus the
configuration is very simple. The slaves essentially are
read-only. Most of the master-slaves services ignore all
the updates or modifications performed at the slave,
and “undo” the update during synchronization, making
the slave identical to the master [3]. The modifications
or the updates can be reliably performed at the master
and the slaves must synchronize directly with the
master.

FILE REPLICATION

FILE REPLICATION
• Peer-to-peer model The Peer-to-peer model is very different from both the master-slave and

the client-server models. Here all the replicas or the copies are of equal importance or they are
all peers. In this model any replica can synchronize with any other replica, and any file system
modification or update can be applied at any replica. Optimistic replication can use a peer-to-
peer model. Peer-to-peer systems allow any replica to propagate updates to any other replicas
[11]. The peer-to-peer model has been implemented in Locus, Rumor and in other distributed
environments such as xFS in the NOW project. Peer-to-peer systems can propagate updates
faster by making use of any available connectivity. They provide a very rich and robust
communication framework. But they are more complex in implementation and in the states
they can achieve [11]. One more problem with this model is scalability. Peer models are
implemented by storing all necessary replication knowledge at every site thus each replica has
full knowledge about everyone else. As synchronization and communication is allowed
between any replicas, this results in exceedingly large replicated data structures and clearly
does not scale well. Additionally, distributed algorithms that determine global state must, by
definition, communicate with or hear about (via gossiping) each replica at least once and
often twice. Since all replicas are peers, any single machine could potentially affect the
outcome of such distributed algorithms; therefore each must participate before the algorithm
can complete, again leading to potential scaling problems [3]. Simulation studies in the file
system arena have demonstrated that the peer model increases the speed of update
propagation among a set of replicas, decreasing the frequency of using an outdated version of
the data

FAULT TOLERANCE

• Fault tolerance is the property that enables
a system to continue operating properly in the event
of the failure of (or one or more faults within) some
of its components.

FAULT TOLERANCE

FAULT TOLERANCE

FAULT TOLERANCE

NETWORK FILE SHARING

• A Network File System (NFS) allows remote hosts to
mount file systems over a network and interact with
those file systems as though they are mounted locally.
This enables system administrators to consolidate
resources onto centralized servers on the network.

• This chapter focuses on fundamental NFS concepts and
supplemental information. For specific instructions
regarding the configuration and operation of NFS
server and client software, refer to the chapter
titled Network File System (NFS) in the Red Hat
Enterprise Linux System Administration Guide.

NETWORK FILE SYSTEM
• Required Services
• Red Hat Enterprise Linux uses a combination of kernel-level support and daemon processes to provide NFS file

sharing. NFS relies on Remote Procedure Calls (RPC) to route requests between clients and servers . RPC services
under Linux are controlled by the portmap service. To share or mount NFS file systems, the following services work
together:

• nfs — Starts the appropriate RPC processes to service requests for shared NFS file systems.
• nfslock — An optional service that starts the appropriate RPC processes to allow NFS clients to lock files on the

server.
• portmap — The RPC service for Linux; it responds to requests for RPC services and sets up connections to the

requested RPC service.
• The following RPC processes work together behind the scenes to facilitate NFS services:
• rpc.mountd — This process receives mount requests from NFS clients and verifies the requested file system is

currently exported. This process is started automatically by the nfs service and does not require user
configuration.

• rpc.nfsd — This process is the NFS server. It works with the Linux kernel to meet the dynamic demands of NFS
clients, such as providing server threads each time an NFS client connects. This process corresponds to
the nfs service.

• rpc.lockd — An optional process that allows NFS clients to lock files on the server. This process corresponds to
the nfslock service.

• rpc.statd — This process implements the Network Status Monitor (NSM) RPC protocol which notifies NFS clients
when an NFS server is restarted without being gracefully brought down. This process is started automatically by
the nfslock service and does not require user configuration.

• rpc.rquotad — This process provides user quota information for remote users. This process is started
automatically by the nfs service and does not require user configuration.

NETWORK FILE SYSTEM

• Troubleshooting NFS and portmap
• Because portmap provides coordination between

RPC services and the port numbers used to
communicate with them, it is useful to view the
status of current RPC services
usingportmap when troubleshooting.
The rpcinfo command shows each RPC-based
service with port numbers, an RPC program
number, a version and an IP protocol type (TCP or
UDP).

