UNIT-|

MODES OF
COMMUNICATION

SYSTEM PROCESS

e Distributed operating system. A distributed
operating system 1Is a software over a
collection of Independent, networked,
communicating, and physically separate
computational nodes. ... The first Is a
ubiquitous minimal kernel, or microkernel,
that directly controls that node's hardware.

INTERRUPT HANDLING

Except for the last chapter, everything we did in the kernel so far we've done as a response to a process asking
for it, either by dealing with a special file, sending an ioct1 (), or issuing a system call. But the job of the
kernel isn't just to respond to process requests. Another job, which is every bit as important, is to speak to the
hardware connected to the machine.

There are two types of interaction between the CPU and the rest of the computer's hardware. The first type is
when the CPU gives orders to the hardware, the other is when the hardware needs to tell the CPU something.
The second, called interrupts, is much harder to implement because it has to be dealt with when convenient for
the hardware, not the CPU. Hardware devices typically have a very small amount of RAM, and if you don't
read their information when available, it is lost.

Under Linux, hardware interrupts are called IRQ's (InterruptRe guests)[16]. There are two types of IR(Q)'s,
short and long. A short IRQ is one which is expected to take a very short period of time, during which the rest
of the machine will be blocked and no other interrupts will be handled. A long IR() is one which can take
longer, and during which other interrupts may occur (but not interrupts from the same device). If at all
possible, it's better to declare an interrupt handler to be long.

When the CPU receives an interrupt, it stops whatever it's doing (unless it's processing a more important
interrupt, in which case it will deal with this one only when the more important one is done), saves certain
parameters on the stack and calls the interrupt handler. This means that certain things are not allowed in the
interrupt handler itself, because the system is in an unknown state. The solution to this problem is for the
interrupt handler to do what needs to be done immediately, usually read something from the hardware or send
something to the hardware, and then schedule the handling of the new information at a later time (this is called
the "bottom half") and returm. The kernel is then guaranteed to call the bottom half as soon as possible —— and
when it does, everything allowed in kernel modules will be allowed.

INTERRUPT HANDLING

et !

[had a problem with writing the sample code for this chapter. On one hand, for an example to be useful it has
to run on everybody's computer with meaningful results. On the other hand, the kernel already includes device
drivers for all of the common devices, and those device drivers won't coexist with what I'm going to write.

The solution I've found was to write something for the keyboard interrupt, and disable the regular keyboard
interrupt handler first. Since it is defined as a static symbol in the kernel source files (specifically,

drivers/char/keyboard.c), there is no way to restore it. Before insmod'ing this code, do on another
terminal sleep 120; reboot if you value your file system.

This code binds itself to IRQ 1, which is the IR() of the keyboard controlled under Intel architectures. Then,
when it receives a keyboard interrupt, it reads the keyboard's status (that's the purpose of the inb (0x64))
and the scan code, which is the value returned by the keyboard. Then, as soon as the kernel thinks it's feasible,

it runs got_char which gives the code of the key used (the first seven bits of the scan code) and whether it
has been pressed (if the 8th bit is zero) or released (if it's one).

INTERRUPT HANDLING

f*
i intrpt.c — An interrupt handler.
o
Copyright (C) 2001 by Peter Jay Salzman
2T
i*
* The necessary header files
ki,
.|'r*
* Standard in kernel modules
o
$include <linux/kernsl . h> f* We're doing kernel work =,/
$include <linux/module.h> f* Specifically, a module */

$include <linux/sched.h>

#include <linux/workgueues.h>

#include <linux/interrupt.h> f* We want an interrupt */
#include <asmfio.h>

fdaefine MY_WORK _QUEUE_NAME "WQsched.c™
static struct workgueue_struct *my workgueues;

.fr*
* This will get called by the kernel as soon as it's safe
* to do ewverything normally allowed by kernsel modules.
o

static woid got_char (void *scancodea)}

i
printk (KERM_INFO "Scan Code %x %s.Zn",

{int) *{{char *)scancode) & 0x7F,
*{{char *)scancode) & 0x80 7 "Released"” : "Pressed™);

e
* This function serwvices keyboard interrupts. It reads the relevant
* information from the keyboard and then puts the non time critical
* part into the work gueuwse. This will be run when the kernel considers it safe.
2T)

irgreturn t irqg handler({int irg, wvoid *dew_id, struct pt regs *regs)

.Iu":’r

int

1

INTERRUPT HANDLING

;=
* This wariables are static because they need to be
* accessible (through pointers) to the bottom half routine.
=y

gstatic int initialised = 0;

static unsigned char scancode;
static struct work struct task;
unsigned char status;

l,n's
* FRead keyboard status
o
status = inb (0xE4} ;
scancode = inb{0x&0) ;
if {(initialised == 0) {
IMIT WORK (stask, got_char, &Escancode);
initialised = 1;
i =lse |

PREPAFRE_WORK (&task, got_char, &scancode);

gqueue work (my workgueue, &task);

return IRD HANDLED;

Initialize the module — register the IRD handler

init_modale ()

my workgqueuse — create workqgueue (MY WORK QUELDTE _NAME) -
i‘lt
* Since the keyvboard handler won't co—exist with another handler,
= such as us, we hawve to disable it (free its IRD) befors we do
= anything. Since we don"t know where it is, there's no way to
= reinstate it later — so the computer will hawve to be rebooted
= when we're done.
=
free irg{l, HNULL) ;

INTERRUPT HANDLING

* Request IRQ 1, the keyboard IRQ, to go to our irg handler.
* S SHIRQ means we're willing to hawve othe handlers on this IRQ.

* Sh_INTERRUFT can be used to make the handler into a fast interrupt.
T
return reguest_irgi(l, /* The number of the keyboard IRQ on BCs */
irg _handler, /* our handler */

SA_SHIR(Q, "test_keyboard irg handler"®,

{wvoid *) {irg _handler));
i

I*
* Cleanup
xd

void cleanup_modules()

{
I

* Thi= is only here for completeness. It's totally irrelevant, since

Chapter 12. Interrupt Handlers

The Linux Kernel Module Programming Guide

* we don't have a way to restore the normal keyboard interrupt so the
* computer is completely useless and has to be rebooted.
i |
free_irg{l, HNULL};
'
J*
* some work_gueue related functions are just awvailable to GPL licensed Modules
o}
MODULE_LICENSE ("GPL") ;

HANDLING SYSTEM CALLS

So far, the only thing we've done was to use well defined kernel mechanisms to register /proc files and
device handlers. This is fine if you want to do something the kernel programmers thought you'd want, such as
write a device driver. But what if you want to do something unusual, to change the behavior of the system in
some way? Then, vou're mostly on your own.

This is where kernel programming gets dangerous. While writing the example below, 1 killed the open ()
system call. This meant I couldn't open any files, I couldn't run any programs, and I couldn't shutdown the
computer. I had to pull the power switch. Luckily, no files died. To ensure you won't lose any files either,
please run sync right before you do the insmod and the rmmod.

Forget about /proc files, forget about device files. They're just minor details. The real process to kernel
communication mechanism, the one used by all processes, is system calls. When a process requests a service
from the kernel (such as opening a file, forking to a new process, or requesting more memory), this is the
mechanism used. If you want to change the behaviour of the kernel in interesting ways, this is the place to do
it. By the way, if you want to see which system calls a program uses, run strace <arguments>.

In general, a process is not supposed to be able to access the kernel. It can't access kernel memory and it can't
call kernel functions. The hardware of the CPU enforces this (that's the reason why it's called "protected
mode").

System calls are an exception to this general rule. What happens is that the process fills the registers with the
appropriate values and then calls a special instruction which jumps to a previously defined location in the
kernel (of course, that location i1s readable by user processes, it is not writable by them). Under Intel CPUs,
this is done by means of interrupt Ox80. The hardware knows that once you jump to this location, you are no
longer running in restricted user mode, but as the operating system kemel ——- and therefore you're allowed to
do whatever you want.

HANDLING SYSTEM CALLS

System calls are an exception to this general rule. What happens is that the process fills the registers with the
appropriate values and then calls a special instruction which jumps to a previously defined location in the
kernel {of course, that location is readable by user processes, it is not writable by them). Under Intel CPUs,
this is done by means of interrupt (x80. The hardware knows that once you jump to this location, you are no
longer running in restricted user mode, but as the operating system kemel ——— and therefore you're allowed to
do whatever you want.

The location in the kernel a process can jump to is called svstem_call. The procedure at that location checks
the system call number, which tells the kernel what service the process requested. Then, it looks at the table of
system calls (sy=_call_table) to see the address of the kernel function to call. Then it calls the function,
and after it returns, does a few system checks and then return back to the process (or to a different process, if
the process time ran out). If you want to read this code, it's at the source file
arch/$<$SarchitectureS>5/kernel/entry. S, after the line ENTRY (system call).

So, if we want to change the way a certain system call works, what we need to do is to write our own function
to implement it (usually by adding a bit of our own code, and then calling the original function) and then
change the pointer at sys_call_table to point to our function. Because we might be removed later and
we don't want to leave the system in an unstable state, it's important for cleanup_module to restore the
table to its original state.

The source code here is an example of such a kernel module. We want to “spy' on a certain user, and to
printk () a message whenever that user opens a file. Towards this end, we replace the system call to open a
file with our own function, called our_sys_open. This function checks the uid (user's id) of the current
process, and if it's equal to the uid we spy on, it calls printk () to display the name of the file to be opened.
Then, either way, it calls the original open () function with the same parameters, to actually open the file.

HANDLING SYSTEM CALLS

The init_module function replaces the appropriate location in sys_call_ table and keeps the original
pointer in a variable. The cleanup_modul e function uses that variable to restore everything back to
normal. This approach is dangerous, because of the possibility of two kernel modules changing the same
system call. Imagine we have two kernel modules, A and B. A's open system call will be A_open and B's will
be B_open. Now, when A is inserted into the kernel, the system call is replaced with A_open, which will call
the original sys_open when it's done. Next, B is inserted into the kernel, which replaces the system call with
B_open, which will call what it thinks is the original system call, A_open, when it's done.

MNow, if B is removed first, everything will be well———it will simply restore the system call to A_open, which
calls the original. However, if A is removed and then B is removed, the system will crash. A's removal will
restore the system call to the original. svs_open, cutting B out of the loop. Then, when B is removed, it will
restore the system call to what ir thinks is the original, A_open, which is no longer in memory. At first glance,
it appears we could solve this particular problem by checking if the system call is equal to our open function
and if so not changing it at all (so that B won't change the system call when it's removed), but that will cause
an even worse problem. When A is removed, it sees that the system call was changed to B_open so that it is
no longer pointing to A_open, so it won't restore it to sys_open before it is removed from memory.
Unfortunately, B_open will still try to call A_open which is no longer there, so that even without removing B
the system would crash.

Mote that all the related problems make syscall stealing unfeasiable for production use. In order to keep people
from doing potential harmful things sys_call_table is no longer exported. This means, if you want to do
something more than a mere dry run of this example, you will have to patch your current kernel in order to
have sys_call_table exported. In the example directory you will find a README and the paich. As yvou can
imagine, such modifications are not to be taken lightly. Do not try this on valueable systems (ie systems that
you do not own — or cannot restore easily). You'll need to get the complete sourcecode of this guide as a
tarball in order to get the patch and the README. Depending on your kemel version, you might even need to
hand apply the patch. 5till here? Well, so is this chapter. If Wyle E. Coyote was a kernel hacker, this would be
the first thing he'd try. :)

HANDLING SYSTEM CALLS

.|'r""'

syscall.c

* System call "stealing" sample.

=5

lI|"-.|r

* Copyri

ot

.|'r""'

ght (C) 2001 by Peter Jay Salzman

* The necessary header files

xy

lI||'-.|r

* Btandard in kernel modules

ol 4
$#include
$#include
$#include
#include

<linux/kernel.h>
<linux/module.h>
<linux/moduleparam.h>
<linux/unistd.h>

J.l't
J.I't
J.I't
J.I't

We're doing kernel work */
Specifically, a module, *f
which will have params */

The list of system calls */

HANDLING SYSTEM CALLS

For the current (pProces=s) structure, we nescd
this to know who the current user is.

.
k2
=
Finclude <limnux/Ssched.h>
Finclude casm M auaaccess.h>

.I."-.-r
*= The =sSystem call table (a table of functions) o HWe
* Just define this as external, and the kermnel will
* £3i11 it up for us when we are insmod®aed
e
* o my=m_call table is no longer exported in 2.6.x kernels.
* TFf wou really want to try this DAMNCGERODUS modoale wyou will
* hawe to apply the supplied patch against your current kernsl
* and recompile it.
g
extern wvoid *sy=s_call table[1:
.lll'*
* PID we want to spy on — will be £illed £from the
* command l1ine
Loy
static imt widi
module param{wuaid, int, Os44)
.lll'-.Pr
* A pointer to the originmnal system call. The rreason
* wme keep this, rather than oc=all the origimal function
* f=ys_open), is because somebody else might hawve
* replaced the sy=s=tem —call before us. NMote thast this
* 1= ot 100% safe, becaun=se i f another moduls
* replaced sys__open before us, then when we"rs inserted
* m="11 c=:ll the function in that module — and it
* might be removed before we are.
o
* Anotcher reason for this is that we can't get sys _ open.
* Tt"s a static wariable, =o it is nobt exported.
o

azsmlinkage int (*original_ calili) {con=t char *, dint, it} :

HANDLING SYSTEM CALLS

* The function we'll replace sys_open (the function

* called when you call the open system call) with. To
* find the exact prototype, with the number and type
* of arguments, we find the original function first

* {it's at f£sfopen.¢).

In theory, this means that we're tied to the
* current version of the kernel. In practice, the
* system calls almost never change (it would wreck havoc
* and require programs to be recompiled, since the system
* calls are the interface between the kernel and the
* pracesses) .

asmlinkage int our_sys_open{const char *filename, int flags, int mode)
{

int 1= 0O

char ch:

/*
* Check if this is the user we're spying on

xf

HANDLI

— I Eern
dr

= |

* Report
e
printk {0
do |
=1

=
} while
printk (=%
i

e

* Call the origi
* the ability to
i

return aoriginal_oc
1
f*
* ITmitialize the module
e
int init_module ()
i
£=
* Warning — too
* next time. ..
o

printk (KERM_ALERT
printk (KERN_ALERT
printk (KERM_ALERT
printk (KERM_ALERT
printk (KERM_ALERT
printk (KERN_ALERT
printk (KERN_ALERT

NG SYSTEM CALLS

t—>uid) |

the file, if relswvant

pened file by %d: =, uid);
et_user {ch, filename + i) ;
Bl =

rintk ("%c™ . ch);

ch '= 0);

n"};:

nal sys_open — otherwise, we lose
open files

all(filenam=, flags, mode);

— replace the system call

late for it now, but maybs for

"I'm dangerous. I hope you did a *);

"async before you insmod*ed me.\n");

"My counterpart, cleanup_module(), is even™)};
"more dangerou=s. Ifyn™)

"wou walue your file system, it will ™) ;

"be ZWsync; rmmodhY® W) ;

"when you remove this module. ") ;

HANDLING SYSTEM CALLS

;-
* Keep a pointer to the original function in
* priginal_call, and then replace the system call
* in the system call table with our_sys_open

o
original_call = sys_call_table(__HNR_open];
sys_call_table[__ NR_open] = our_sys_open;
I,n't
* To get the address of the function for system
* call foo, go to ays_call_table[_NR foo].
*F

printk (KERM_INFO "Spying on UID:&d\n", uid);

return 0;

J*
* Cleanup - unregister the appropriate file from fproc
=

void cleanup_module()

{

I,n't

* Return the system call back to normal

HANDLING SYSTEM CALLS

I T DRl D] P | IU'HIIJ.IIIIIIIII'H AL Tl

!
if (sys_call_table[_MNR_open] != our_sys_open) |
printk (KERN_ALERT "Somebody else also played with the *);
printk (KERN_ALERT "open system call\n');
printk (KERN_ALERT "The system may be left in ");
printk (KERN_ALERT "an unstable state.\n");

sys_call_table[_ IR _open| = original_call;

PROTECTION OF RESOURCES

What do you do when somebody asks you for something you can't do right away? If you're a human being and
you're bothered by a human being, the only thing you can say is: "Not right now, I'm busy. Ge away!". But if
you're a kernel module and you're bothered by a process, you have another possibility. You can put the
process to sleep until you can service it. After all, processes are being put to sleep by the kernel and woken up
all the time (that's the way multiple processes appear to run on the same time on a single CPU).

This kernel module is an example of this. The file (called /proc/sleep) can only be opened by a single
process at a time. If the file is already open, the kernel module calls wait_event_interruptible[l2].
This function changes the status of the task (a task is the kemel data structure which holds information about a
process and the system call it's in, if any) to TASK_INTERRUPTIELE, which means that the task will not run
until it is woken up somehow, and adds it to Wait(Q), the queue of tasks waiting to access the file. Then, the
function calls the scheduler to context switch to a different process, one which has some use for the CPU.

When a process is done with the file, it closes it, and module_ close is called. That function wakes up all
the processes in the queue (there's no mechanism to only wake up one of them). It then returns and the process
which just closed the file can continue to run. In time, the scheduler decides that that process has had enough
and gives control of the CPU to another process. Eventually, one of the processes which was in the queue will
be given control of the CPU by the scheduler. It starts at the point right after the call to
module_interruptible_sleep_on[l13]. It can then proceed to set a global variable to tell all the other
processes that the file is still open and go on with its life. When the other processes get a piece of the CPU,
they'll see that global variable and go back to sleep.

So we'll use tail —f to keep the file open in the background, while trying to access it with another process
{again in the background, so that we need not switch to a different vt). As soon as the first background process
1s killed with kill %1 . the second is woken up, is able to access the file and finally terminates.

To make our life more interesting, module_close doesn't have a monopoly on waking up the processes
which wait to access the file. A signal, such as Ctrl4+c (SIGINT) can also wake up a process. [14] In that
case, we want to return with —EINTE immediately. This is important so users can, for example, kill the
process before it receives the file.

There is one more point to remember. Some times processes don't want to sleep, they want either to get what
they want immediately, or to be told it cannot be done. Such processes use the 0 NONBLOCK flag when
opening the file. The kernel is supposed to respond by returning with the error code —EAGAIN from
operations which would otherwise block, such as opening the file in this example. The program cat_noblock
available in the source directory for this chapter, can be used to open a file with O _NONEBLOCK.

hostname:~/lkmpg-—examples /09-BlockingProcesses# insmod sleep.ko
hostname:~/lkmpg-examples /09-BlockingProcesses# cat_ncoblock /proc/sleep
Last input:

hostname:~/lkmpg-examples//09-BlockingProcesses# tail -f Sproc/sleep &
Last input:

Last input:

Last input:

Last input:

Last input:

Last input:

Chapter 9. Blocking Processes

1]

The Linux Kernel Module Programming Guide

Last input:

tail: /fprocf/sleep: file truncated

[1] &540

hostname:~/lkmpg-examples/09%-BlockingProcesses# cat_noblock fproc/sleep
Open would block

hostname:~/lkmpg-examples /09-BlockingProcesses$# kill %1

[1]+ Terminated tail -f fproc/sleep
hostname:~/lkmpg—examples /09-BlockingProcesses# cat_noblock /proc/sleep
Last input:

hostname:~/lkmpg-examples /059-BlockingProcesses#

f*
* sleep.c - create a fproc file, and if several processes try to open 1t at
the same time, put all but one to slesp

il s

#include <linux/kernel.h> /* We're doing kernel work */f

#include <linux/module.h> /* Bpecifically, a module */

¢include <linux/proc_fs.h> /* Necessary because we use proc fs */

#include <linux/sched.h> /* For putting processes to sleep and
waking them up */

#include <asmfuaccess.h> /* for get_user and put_user */

I*

* The module's file functions

oy

.I‘r*

* Here we keep the last message received, to prove that we can process our

* input

oy

fdefine MESSAGE LEMNGTH 80
static char Message[MESSAGE_LENGTH] ;

static struct proc_dir entry *Dur_Proc _File;
fdefine PROC_ENTRY_FILENMAME “sleep®

I*

* Bince we use the file operations struct, we can't use the special proc

* putput provisions - we have to use a standard read function, which is this
* function

L

static ssize_t module_output (struct file *file, /* see includeflinuxffs.h L
char *buf, f* The buffer to put data to
{in the user segment) =
size_t len, /* The length of the buffer */f
loff_t * offset)

T T T QT ESEeTY

static int finished = 0;
int i;
char message [MESSAGE LENGETH + 30];

I.n':|t
= Return 0 to signify end of file
* more to say at this point.

o

if (finished) |
finished = 0;
return 0;

— that we hawve nothing

Chapter 9. Blocking Processes

The Linux Kermel Module Programming Guide
}

I=
= If you don't understand this by now, you're hopeless as a kernel
* programmer .
e
sprintf (message, "Last input:%s'"n", Message);
for (1 = 0; i1 = len && message[i]; i++)
put_user (message[i], buf + i};
finished = 1;
return ij; Ji

Return the number of bytes "read™ =/
1

£*

* This function receiwves input from the user when the user writes to the Jfproc
* oy les,

*F
=static ssizre_t module _input (struct file *file, F* The file itzself *jf

PROTECTION OF RESOURCES

Example 9-2. cat_noblock.c

f* cat_noblock.c — open a file and display its contents, but exit rather than
* wait for input *f

f* Copyright (C)} 1998 by Ori Pomerantz */f

#include <stdio.h> f* standard IS0 =f
$include =fcocntl.h> £x= for open =f
#include <unistd.h> £* for read */f
#include <stdlib.h> £f* for axit ®)
#include <errnoc.h> F* far erroo *f

#define MAX_BYTES 10Z4+*4

main(int argc, char *argwv([])

i
int £d; f* The file descriptor for the file to read */
size_t bytes; /* The number of bytes read *=/

char buffer [MAX BYTES]; /* The buffer for the bytes */f

f* Uaags *f

if {(argc !'= 2) |
printf ("Usage: %s <filename>‘n", argv([0]);
puts ("Reads the content of a file, but doesn't wait for input®};
exit(—1);

PROTECTION OF RESOURCES

/* Read the file and output its contents */
do |
int i;

/* Read characters from the file */
bytes = read{fd, buffer, MAX EBYTES);

f* If there's an error, report it and die */
if (bytes == -1) |
if (errno = EAGAIN)
puts ("Normally I'd block, but you told me not to%);

else
puts{"Another read error”};
exit (-1}

/* Print the characters */
if (bytes > 0) |
for(i=0; i<bytes; i++t)
putchar (bufferfi]);

f* While there are no errorz and the file isn't owver */f
} while (bytes > 0);

RESOURCES MANAGEMENT

MICRO- KERNEL

WHAT IS A MICROKERNEL-BASED DESIGN?

* Microkernel implements only privileged OS functionality
- E.g., interrupt handling, scheduling, programming the hardware

* Remove everything that can be done outside the kernel

- E.g., memory management, file servers, network stack, device drivers

* Note: microkernel by itself is not a complete OS!

— User-space parts implement OS functionality and provide application API

* Low-level microkernel API is typically not exposed to applications

MICRO- KERNEL

HOW TO ORGANIZE THE USER-SPACE PARTS?

 Single-server OS design is not good enough

— Still runs in single protection domain
s (o) (o) o]
* Single failure is still fatal

— Microkernel may survive

— Requires reboot of the OS

* Applications and user data will be lost

e N

MICRO- KERNEL

A COMPLETELY COMPARTMENTALIZED OS

* Both servers and drivers are isolated in user space

» Separate protection domains [] [j [j
user user user

server [l server [l server
_ k driver [l driver [l driver
3

——— . ——— - |

MICRO- KERNEL

» Both servers and drivers are isolated in user space
» Separate protection domains []
: Ejsea @SGJ user
- Local failures cannot spread

KERNEL

L
-

MICRO- KERNEL

HOW DOES A USER-MODE DRIVER WORK?

 Driver is unprivileged process with private address space
— Just like ordinary application program such as Firefox
* Drivers require special privileges, however

— For example, exchange data with file server and other drivers
— Perform device /O and hardware interrupt handling

* Only kernel has these privileges, so request for help

— Drivers can also request services from other OS servers

MICRO- KERNEL

* Interprocess communication (IPC) facilities

- Usually works by passing messages between processes

— Trap to kernel in order to have message copied from A to B

* Process A does IPC_SEND(B, &message)
* Process B does IPC_RECEIVE(ANY, &message)

 Calls kernel's system task to perform privileged operations
- SAFECOPY: capability-protected data copy between processes
— DEVIO: kernel performs device I/O on behalf of driver
- IRQCTL: control IRQ line and acknowledge hardware interrupts

* Kernel forwards interrupts to driver in an IPC message

MICRO- KERNEL

— Communication overhead
— Copying of data

* Times have changed ...

- New insights reduced performance penalty (only 5-10%)
* Results from four independent studies
— Absolute performance penalty is minimal these days

— Users gladly sacrifice some performance for reliability

UNIT -1l

REVIEW OF NETWORK
OPERATING SYSTEM

DISTRIBUTED OS

« Adistributed operating system is a software
over a collection of independent, networked,
communicating, and physically separate
computational nodes. Each individual node
holds a specific software subset of the global
aggregate operating system. Each subset Is a
composite of two distinct service provisioners.

DISTRIBUTED OS

= -
Host S / Host

T, Host Host Hast

——— ﬁ_;‘*—“ Local Area Network (LAN)
Host

Gateway

CP -» Communication Process

—_—

\
\ &

Host Database

A Typical View of Distributed System

DISTRIBUTED OS

A distnbuted operating system must be designed to provide all the advantages of a
distributed system to its users. That 15, the users should be able to view a distributed
system as a virtual centralized system that 1s flexible, efficient, reliable, secure, and easy
to use. To meet this challenge, the designers of a distnibuted operating system must deal

with several design 1ssues. Some of the key design i1ssues are described below.

e Access transparency.

e Location transparency.

* Replication transparency.
o Failure transparency.

e Migration transparency.

o (Concurrency transparency.
» Performance transparency.

e Scaling transparency.

DISTRIBUTED OS

4.2_Reliability

Distributed system, which manages multiple resources, must be designed properly to
increase the system's reliability by taking full advantage of this characteristic feature of'a
distributed system. For higher reliability, the fault-handling mechanisms of a distributed
operating system must be designed properly to avoid faults, to tolerate faults, and to
detect and recover from faults. Commonly used methods for dealing with these i1ssues are

fault avordance and fault tolerance.

4.3 Flexibility

Another important 1ssue n the design of distributed operating systems 1s flexibility.
Flexibility 1s the most important feature for open distributed systems. The design of
distributed operating system should be tlexible due to the following reasons:

o Ease of modification

¢ Ease of enhancement

DISTRIBUTED OS

The overall performance should be better than or at least equal to that of running the

4.4 _Performance

same application on a single-processor system. Some design principles considered useful

for better performance are as follows:

* Batch if possible.

e (Cache whenever possible.
 Minimize copying of data.
o Mimmize network tratfic.

¢ Take advantage of fine-grain parallelism for multiprocessing.

4.5 Scalability

A distributed operating system should be designed to easily cope with the growth of
nodes and users in the system. That is, such growth should not cause serious disruption
of service or significant loss of performance to users. Some guiding principles for

designing scalable distributed systems are as follows:

s Avoid centralized entities.

* Avoid centralized algorithms.

DISTRIBUTED OS

4.6_Heterogeneity

A heterogeneous distributed system consists of interconnected sets of dissimilar
hardware or software systems. Because of the diversity, designing heterogeneous
distributed systems i1s far more difficult than designing homogeneous distributed
systems, in which each system is based on the same, or closely related. hardware and
software. However, as a consequence of large scale, heterogeneity 1s often mmevitable in
distributed systems [2]. Furthermore, often heterogeneity is preferred by many users
because heterogeneous distnbuted systems provide the flexibility to theiwr users of

different computer platforms for different applications.

DISTRIBUTED OS

4.7 Security
In order that the users can trust the system and rely on it, the various resources of a
computer system must be protected against destruction and unauthorized access.
Enforcing security in a distributed system is more difficult than in a centralized system
because of the lack of a single point of control and the use of insecure networks for data
communication. Therefore, as compared to a centralized system, enforcement of security
in a distributed system has the following additional requirements [12];
It should be possible for the sender of a message to know that the message
was received by the intended receiver.
» [t should be possible for the receiver of a message to know that the message
was sent by the genuine sender.
s It should be possible for both the sender and receiver of a message to be

guaranteed that the contents of the message were not changed while it was in

transfer.

COMPUTER N/W

Today the world scenario is changing. Data Communication and network have changed the way business and
other daily affair works. Now, they rely on computer networks and internetwork. A set of devices often
mentioned as nodes connected by media link is called a Network. A node can be a device which is capable of
sending or receiving data generated by other nodes on the network like a computer, printer etc. These links
connecting the devices are called Communication channels.

Computer network is a telecommunication channel through which we can share our data. It is also called data
network. The best example of computer network is Internet. Computer network does not mean a system with
control unit and other systems as its slave. It is called a distributed system

A network must be able to meet certain criteria, these are mentioned below:
1. Performance

2. Reliability

3. Scalability

COMPUTER N/W

Performance
It can be measured in mllnwing Ways -

« Transit time : It is the time taken to travel a message from one device to another.

= Response time : [t is defined as the time elapsed between enquiry and response.
Cther ways to measure performance are :

1. Efficiency of software
2. Number of users

3. Capability of connected hardware
Reliability

It decides the frequency at which network failure take place. More the failures are, less is the network's
reliability.

Security

It refers to the protection of data from the unauthorised user or access. While travelling through network, data
passes many layers of network, and data can be traced if attempted. Hence security is also a very important
characteristic for Networks.

COMPUTER N/W

Properties of Good Network

1. Interpersonal Communication : We can communicate with each other efficiently and easily example
emails, chat rooms, video conferencing etc.
2. Resources can be shared : We can use the resources provided by network such as printers etc.

3. Sharing files, data : Authorised users are allowed to share the files on the network.

Basic Communication Model

Communication model is used to exchange data between two parties. For example communication between a
computer, server and telephone (through modem).

{ SOURCE J:;{ TRANSMITTER]:;;[TRANSMISSION SYSTEM }::;[RECIEVER H DESTINATION]

COMPUTER N/W

Source
Data to be transmitted is generated by this device, example: telephones, personal computers efc.
Transmitter

The data generated by the source system are not directly transmitted in the form they are generated. The
transmitter transforms and encodes the information in such a form to produce electromagnetic waves or

signals.

Transmission System

A transmission system can be a single transmission line or a complex network connecting source and
destination.

Receiver

Receiver accepts the signal from the transmission system and converts it to a form which is easily managed by
the destination device.

Destination

Destination receives the incoming data from the receiver.

COMPUTER N/W

Data Communication

The exchange of data between two devices through a transmission medium is Data Communication. The data
is exchanged in the form of 0's and 1's. The transmission medium used is wire cable. For data communication
to occur, the communication device must be part of a communication system. Data Communication has two
types Local and Remote which are discussed below :

Local :

Local communication takes place when the communicating devices are in the same geographical area, same
building, face-to-face between individuals etc.

Remote :

Remote communication takes place over a distance i.e. the devices are farther. Effectiveness of a Data
Communication can be measured through the following features :

1. Delivery : Delivery should be done to the correct destination.

2. Timeliness : Delivery should be on time.

3. Accuracy : Data delivered should be accurate.

COMPUTER N/W

Line Confiquration in Computer Networks

Network is a connection made through connection links between two or more devices. Devices can be a
computer, printer or any other device that I capable to send and receive data. There are two ways 1o connect
the devices .

{. Point-to-Point connection

2. Mulipoint connection

COMPUTER N/W

Point-To-Point Connection

It is a protocol which is used as a communication link between two devices. It is simple to establish. The most
common example for Point-to-Point connection (PPP) is a computer connected by telephone line. We can
connect the two devices by means of a pair of wires or using a microwave or satellite link.

Example: Point-to-Point connection between remote control and Television for changing the channels.

Link
| cEREEN. | oWEEEEC.
Workstation Workstation

....................

- 92

Workstation Workstation

COMPUTER N/W

It is also called Multidrop configuration. In this connection two or more devices share a single link.

MultiPoint Connection

There are two Kinds of Multipoint Connections :

« [fthe links are used simultaneously between many devices, then it is spatially shared line configuration.

« [T usertakes turns while using the link, then it is time shared (temporal) line configuration.

MAINFRAME T T

LINK

Interprocess communication

nterprocess communication (IPC) is a set of
orogramming interfaces that allow a
programmer to coordinate activities among
different programprocesses that can run
concurrently in an operating system. This
allows a program to handle many user
requests at the same time.

Interprocess communication

LINUX IPC

 Interprocess CommunicationMechanisms.
Processes communicate with each other and
with the kernel to coordinate their activities.
... Signals and pipes are two of them
but Linux also supports the System V IPC
mechanisms named after the Unix ™ release
In which they first appeared.

LINUX IPC

Methods of Inter-Process
Communication

Methods of IPC
Pipes
FIFO
Message QQuenes
Shared Memory

There's another method SOCKETS!!! ... But not
that used in this context as the others above

LINUX IPC

A pseudofile which redirects data from one process
to other.

Below the “ecmd1” and “cmdZ2” takes input from
stdin and outputs to stdout , but a pipe in-between
passes information from “stdout of cmdl1 ™ to “stdin
of cmd2” which outputs to stdin i.e monitor

e.g. Is -aRl home | less ; cat filel file2 file3 | grep
sample

Simplest of all the IPCs

tir e e atamndarad
np gislgsl

LINUX IPC

Stands for First In First Out (obvious in CS)
A named pipe implementation on Linux

Unidirectional in nature (Simplex Communication)

Two system calls available in sys/types.h

int mkfifo(const char *pathname, mode_it mode)

int mknod(const char *path, mode_t mode, dev_t dev)

LINUX IPC

viessage Queues

Released in AT & T System V.2 (a release of Unix)

Part of System V IPC, the other being Shared
Memory and Semaphores

Implementation of Message Passing IPC

Message queue will remain (until deleted) , even if
the process have existed

(Can be made unidirectional or bidirectional

REMOTE PROCEDURE CALLS

 n distributed computing, a remote procedure
call (RPC) is when a computer program causes
a procedure(subroutine) to execute in another
address space (commonly on another
computer on a shared network), which Is
coded as If it were a normal (local) procedure
call, without the programmer explicitly coding
the detalls ...

REMOTE PROCEDURE CALLS

Client's system Servers system

Cliant Saryar

Appl Object Client
code LILID o binding handle

MNetwork
Frotocols

M et ok
addresst,

Endpoint}. @ 1-41....

Buntime B,

| e

Key:
—» = Contributes to client kinding information
------------- » = Hefers to client binding information

REMOTE PROCEDURE CALLS

Client CPU Server CPU
1,.:""""\ Client Server
tub stub
@) r@
2 | e
Operating Tﬁystem | Operating j system

L 3 > MNetwork

REMOTE PROCEDURE CALLS

Message Passing Model

o NMessage passing 5 a general technique for
exchanging information between two o more
processes

¢ Basically an extension to the send /recv [/O
AP

— e.g, UDP, WVMTP

« Supports a number of different communica-
tion styles

— &.q., request fresponse, asynchronous oneway, mul-
ticast, broadcast, etc.

« [ay serve as the basis for higher-level com-
munication mechanisms such as RPC

Message Passing Model (cont'd)

« [N general, message passing does not make
an effort to hide distribution

— e.g., network byte order, pointer linearization, ad-
dressing, and security must be dealt with explicitly

This makes the model efficient and flexible,
but also complicate and time consuming

REMOTE PROCEDURE CALLS

Message Passing Design
Consider ations

s Blocking vs. nonblocking

— Affects reliablility, responsiveness, and program struc-
ture

e Buffered vs. unbuffered

— Affects performance and reliability

o Reliable vs. unreliable

— Affects performance and correctness

Monolithic Application Structure

FILESYSTEM
AP

DATABASE

REMOTE PROCEDURE CALLS

RPC Application Structure

A

EMNERATED RMC

CLIERT GERTRATE
=il SERVER

STLES

¢ Note RFPC generators automate most of
the work involved in separating client and
server functionality

Basic Principles of RPC

1. Use traditional programming style for dis-
tributed application development

2. Enable selective replacement of local proce-

dure calls with remote procecure calls
e Local Procedure Call (LPC)

— A well-known method for transferring control
from one part of a process to another

¢ Implies a subsequent return of control to the
caller

e Remole Procedure Call (RPC)

— Similar LPC, ex<cept a local process invokes a
procedure on a remote system

pie., control is transferred across process es /hosts

REMOTE PROCEDURE CALLS

A Temporal View of RPC

CLIENT :
[N
- I
/ 1.

|
|
CLIENT

, -

=l

KEERNEL

|

|

BLOCKED I
) |

I
i SERVER
=
Zl=
= MA
MECHERT el
il
]
I SERVICE
NETWORK ! EXECUTES
RESPUNSE

« An RPC protocol contains two sides, the
sender and the receiver (i.e., client and server)

— However, a server might also be a client of another
server and so on. ..

A Layered View of RPC

CLIENT HOST SERVER HOST
CLIENT SERVER
FREACESS REMOTE FROCESS REMOTE
FROCEDURE, PRI EIMIEE
APPLACA TN APPLICATIRY 4
o AR
STLW CE STIW CO0E
RPC R
RUNTIME RENTINE
LINRARY | i
REQUEST RESPMONSE
—
"'\q..___-_-____-'___...--"'- ——

w ..

REMOTE PROCEDURE CALLS

RPC Automation

¢ To help make distribution transparent, RPC
hides all the network code in the client stubs
and server skeletons

— These are usually generated automatically. ..

¢ This shields application programs from net-
working details

— e.g., sockets, parameter marshalling, network byte
arder, timeouts, flow control, acknowledgements,
retransmissions, eto.

¢ It also takes adwvantage of recurring com-
muncation patterns in network servers to
generate most of the stub/skeleton code
automatically

Typical Server Startup Behavior

SERVER
PROCESS

r——{1} REGISTER INTERFACE

11} CREATE BEINDING INFO

13} ADVERTISE SERVER
LOCATION

[(4) RECISTER ENDPOINTS

r (5}

ENDFOINT
MAF

NAME SERVICE
HOST

REMOTE PROCEDURE CALLS

Typical Client Startup Behavior
Typical CIientheruer Interaction
R

CLIENT HOST SERVER HOST
CLIENT — e —
FROCESS EEMGTE ! CLIENT

FROCEDURE k PROCESS

APFLICATION CALL i

TLEAAS g APPLICATIEON

mp—— SERVER : LT ;
SERVER PROCESS |
i ! {10} rREFARE L 13} convERT
STUR . & s INFUT (RE) cosvERT = plrmsinry ke INFUT
=+ () FINID g
SERVER i 11I!'tl.l;.nr::'r 12) eecerve
RAC AND

RPC RivTive —ty HUNTTAE RECEIVE J(16) TRANSMIT [DISPATCH

LIBRARY ! lslg:\.:: | ERRRAMY oy EITPLT GUTELT T STUE

i ENDPOINT
!sTlAP =, i
MNAME
NAME DS SERVICE
HOST
CDS SERVICE
HOST
r

REMOTE PROCEDURE CALLS

RPC Models

o There are several variations on the stan-
dard RPC “synchronous request/response”
model

¢ Each model provides greater flexibility, at
the cost of less transparency

o Certain RFPC toolkits support all the differ-
ent models

- e.g., ONC RPC

s Other DOC frameworks do not (due to porta-
bility concerns)

— e.g, OMG CORBA and O5F DCE

RPC Models
SYRCHRONCASE RPFC
CLIENT SERVER
t
JENT (ROWAIT) -\-I.N.\'I' E
Yilh REFLY -+

CLIENT

CALLEBACK R

weacw § _|syvesmonoos catimaes mee VOID RERLY
L0k Ok
i e
BATCH REC
CLIENT *
Vol REFLY -
SUEL i SERVER
VOID REFLY suBl
SUED
sUE3
SUTB3 RETURN

REMOTE PROCEDURE CALLS

RPC Models (cont'd)

EROAINCAST RFC

CLIOENT l

NROADCAST =

A AN -
CERLECTHIN -

BB T

SERVER
o

THEELADKED RFC

; o
EEQLIST * s
- h-\--'-"-—h______-_-_-_- —
l ""mn“‘”.._______' SERVER
| BROADCAST EEQUEST .-+
EEARCAET HRCEADCAST

-S-.I'J.'.'I:l

T

SIEVER

¥

cuaesT 5

[SYHOHRONOLS R

SIEVER

X%

SERVER

3.___#

e

L

Transparency Issues
¢« RPC has a number of limitations that must
be understood to use the model effectively

— Most of thelimitations center around transparency

¢ Transforming a simple local procedure call
into system calls, data conversions, and net-
work communications increases the chance
of something going wrong

— i.e., it reduces the transparency of distribution

REMOTE PROCEDURE CALLS

Tranparency Issues (cont’'d) Parameter Passing

* Key Aspects of RPC Transparency * Functions in an application that runs in a

1. Parameter passing single process may collaborate via parame-
ters and/or global variables

ha

Data representation

3. Binding s Functions in an application that runs in mul-
tiple processes on the same host may col-
laborate wia message passing and/or non-
Exception handling distributed shared memory

4. Transport protocol

(=i

G Call 1anti
Al semantics « However, passing parameters is typically the

) only way that RPFC-based clients and servers
7. Security share information

& Perfarmance — Hence, we have already given uponetype of transparency. ..

REMOTE PROCEDURE CALLS

Parameter Passing (cont’'d)

« Passing parameters across process fhost bound- Parameter Passing (cont'd]
aries is surprisingly tricky. .

o Typical solutions include:

¢« FParameters that are passed by value are fairly
simple to handle — Have the RPC protoool only allow the client to

pass arguments by value

— The client stub Copies the value from the client
and packages into a network message ¢ However, this reduces transparency even further!

— Presentation issues are still important, however — Use a presentation data format where the user
specifically defines what the input arguments are
andwhat the return values are

o« Parameters passed by reference are much

harder B o2.g., Sun's XDOR routines

— 2.4, in Cwhen the address of a variable is passed — RPC facilities typically provide an “interface defi-
nition language" to handle this

B oe.g., passing arrays
roeg., CORBA or DCE IDL

— or more generally, handling pointer-based data
structures

Foe.g., pointers, lists, trees, stacks, graphs, etc.

REMOTE PROCEDURE CALLS

Data Representation

¢« RPC systems intended for heterogenecus Data Representation (cont'd)
environments must be sensitive to byte-ordering
differences

« Examples (cont'd
— They typically provide tools for automatically per- P ()

forming data conwersion (e.g., rpcgen or idl) — DrE RPEC (NDR)

B SUpports multiple presentation layer formats
« Examples:
F Supports “receiver makes it right" semantics. ..
— Sun RPC {XDR)
- Allows the sender to use its own internal for-
r Imposes “canonical” big-endian byte-ordering mat, if it is supported

¢ Minimum size of any field is 32 bits t The receiver then converts this to the appropri-
ate format, if different from the sender's format

— Xerox Courier . - . .
- This iz more efficient than “canonical" big-

. . endian format for little-endian machines
r Uses big-endian

= Minimum size of any field is 16 bits

REMOTE PROCEDURE CALLS

Binding

¢ Binding is the process of mapping a reguest
for a service onto a physical server some-
where in the network

— Typically, the client contacts an appropriate name
server or “location broker” that informs it which
remote server contains the service

B Similar to calling 411. ..

o If service migration is supported, it may be
necessary to perform this operation multiple
times

— Alsomay be necessary to leave a “forwarding’ ad-
dress

Binding (cont'd)

There are two components to binding:

Finding a remote host for a desired service

2. Finding the correct service on the host

— i.e., locating the “process” on a given host that
is listening to a well-known port

Thereare several technigues that clients use
to locate a host that provides a given type
of service

— These technigques differ in terms of their perfor-
mance, transparency, accuracy, and robustness

REMOTE PROCEDURE CALLS

Call Semantics (cont'd)

¢ [ote that if a connectionless transport pro-
tocol is used then achieving “at most once”

semantics becomes more complicated

— The RPC framework must use sequence numbers
and cache responses to ensure that duplicate re-
quests aren't executed multiple times

¢ [Note that accurate distributed timestamps
are useful for reducing the amount of state
that a server must cache in order to detect

duplicates

Security

o Typically, applications making local proce-
dure calls do not have to worry about main-
taining the integrity o security of the caller /callee

— i.e, calls are typically made in the same address

space
r Mote that shared libraries may complicatethis. . .

o Local security is usually handled via access
control or special process privileges

¢ Remote security is handled wia distributed
authentication protocols

— e.g., Kerbercs. ..

REMOTE PROCEDURE CALLS

e Lsually the performance loss from using EFPC
is an order of magnitude or more, comparead
with making a local procedure call due to

1. Frotocol processing

ha

Context switching
3. Data copyving
4. Nelwork latency

5. Congestion

o [Note, these sources of overhead are ubiqui-
tous to networking. . .

e RFPC also tends to be much slower than us-
ing lower-level remote IPC facilities such as
sockets directly due to overhead from

1. FPresantation conversion

ha

Data copying
3. Flow control

— a.q., stop-and-wait, synchronous client call be-
haviar

4. Timer management

— Mon-adaptive {consequence of LAN upbringing)

s Note these sources of overhiead are typical
of RFPC. ..

REMOTE PROCEDURE CALLS

Summary

e HFC is one of several models for implement-
ing distributed communication

— It is particular useful for transparently supporting
request Sfresponse-style applications

— However, it is not appropriate for all applications
due to its performance overhead and lack of flexi-
Bility

« Before deciding on a particular communicar
tion maodel it = crucial to carefully analyze
the distributed requirements of the applica-
tions involved

— Particularly the tradeoff of security for performance. ..

3. Synchronization in Distributed
Systems

 In a centralized system: all processes reside on
the same system utilize the same clock.

 In adistributed system: like synchronize
everyone’s watch in the classroom.

Global Time

* Global Time is utilized to provide timestamps
for processes and data.

« v Physical clock: concerned with “People”
time

v Logical clock: concerned with relative
time and maintain logical consistency

Physical Clocks

e There are two aspects:

v" Obtaining an accurate value for physical time

v" Synchronizing the concept of physical time
throughout the distributed system

B These can be implemented using centralized
algorithms or distributed algorithms

Obtaining an Accurate Physical Time

» A physical time server is needed to access the
current time from a universal time coordinator (UTC).

e Two sources for UTC:

v WWV shortwave radio station in Ft. Collins, Colorado

v’ Geostationary Operational Environmental Satellites
(GEQS)

Synchronizing Physical Time

* The difference in time between two clocks
due to drifting is defined as clock skew. As
long as any and every two clocks differ by a
value less than the maximum skew value, the
time service Is considered to be maintaining
synchronization.

How to synchronize two clocks in A
and B?

The information necessary to read the value must be
communicated across the network to location B.

B’s clock value must be read.
B’s clock value Is communicated back to location A.

B’s clock value is adjusted to reflect the time
necessary to travel across the network.

B’s clock value is compared to A’s clock value.

Centralized Physical Time Services

e Broadcast Based

e Request Driven

Broadcast Based — first approach

e The centralized time server’s action:

The physical time service broadcasts periodically the current time to
members of the distributed systems.

e The participants’ action:

v' If a given participant’s clock is ahead of the time server’s clock, the
participant slows down its clock so that it will continually move closer to
the accurate time.

v If a participant’s clock is behind the time server’s clock, the participant
moves its clock forward. Alternatives do include gradually speeding up the
clock.

For example

Location A Time server
Current time=740
" Delay of 10

Location A

Broadcast Based — second approach
(Berkeley algorithm)

Location A Time Server Location B

Current time = 740

My current time =720

My current time =732

Adjust forward =6

Adjust slowdown to accommodate 2

a0

Request Driven

Location A Timer Server

Request for
current time

“—Current time=740
Delay=10

Distributed Physical Time Service

« Each location broadcasts its current time at predefined set
Intervals. Once a location has broadcast its time, it starts a
timer. It then collects time messages that it receives. Each
time message that arrives is stamped with the local current
time. This process continues until the timer expires. Upon the
expiration of the timer, each message is adjusted to reflect
the network delay time estimated for the message source. At
this stage, the participant calculates the average time
according to one of the following approaches:

 Calculate the average of all messages

Adjusted received times

e Delete the times that are above the threshold
and then average the rest.

Adjusted received times

The numbers besides X are deleted.
The rest are averaged.

 Discard the highest x and the lowest x values
and then average

Adjusted received times

Logical Clocks

« \WWhy Logical Clocks?

It Is difficult to utilize physical clocks to order
events uniquely in distributed systems.

* The essence of logical clocks is based on the
happened-before relationship presented by
Lamport.

Happen-Before Relationship

 |If two events, a and b, occurred at the same process,
they occurred in the order of which they were
observed. That is, a > b.

 |f asends amessage to b, thena>b. Thatis, you
cannot receive something before it is sent. This
relationship holds regardless of where events aand b
occur.

» The happen-before relationship is transitive. If a happens before b and b
happens before ¢, then a happens before c. That is, if a>b and b > ¢, then
a>c.

Logical Ordering

« If T(a) is the timestamp for event a, the following relationships must hold in a

distributed system utilizing logical ordering.

If two events, a and b, occurred at the same process,
they occurred in the order of which they were
observed. That is T(a) > T(b).

If a sends a message to b, then T(a) > T(b).

If a happens before b and b happens before c, T(a) >
T(b), T(b) > T(c), and T(a) > T(c).

For example

E F
Process 3 P Py
: D./
Process 2 @
A J
Process —@
1

A>B>C>D>F E

Lamport’s Algorithm

« Each process increments its clock counter between
every two consecutive events.

 |f a sends a message to b, then the message must
Include T(a). Upon receiving a and T(a), the receiving
process must set its clock to the greater of [T(a)+d,
Current Clock]. That is, if the recipient’s clock is
behind, it must be advanced to preserve the happen-
before relationship. Usually d=1.

For example

Process 3

@
" %/
Process 2 @

A1) /
Process —@ B(2)

1

Total Ordering with Logical Clocks

Process 3

E(1.3 F(5.3
(1.3) .()

@
C(3.2) %)/
Process 2 j

A(L.1)
Process —@ B(2.1)

1

A>E>B>C>D>F

Mutual Exclusion

e In single-processor systems, critical regions
are protected using semaphores, monitors,
and similar constructs.

 In distributed systems, since there is no
shared memory, these methods cannot be
used.

A Centralized Algorithm

coordinator

process Regue ‘

rant

Enter crical’
section !

» Advantages: Bxis fair, easy to implement, and requires only three messages
per use of a critical region (request, grant, release).

» Disadvantages: single point of failure.

Distributed Algorithm

OK

\Qi

EQ 20

Token Ring Algorithm

A Comparison of the Three

Algorithms
Algorithm Messages Delay Problems
per entry/exit | before entry
Centralized |3 2 Coordinator crash
Distributed | 2(n-1) 2(n-1) Crash of any process
Tokenring |1too Oton-1 Lost token, process

crash

Election Algorithm

e The bully algorithm

* When a process notices that the coordinator is no
longer responding to requests, it initiates an election.
A process, P, holds an election as follows:

v' P sends an ELECTION message to all processes with
nigher numbers.

v"If no one responds, P wins the election and becomes
coordinator.

v If one of the higher-ups answers, it takes over. P’s job
Is done.

For example

@ ® @
lection
@ e
& @

oordinator

* ARIng Algorithm

23456

234561

23

234

Atomic Transactions

« All the synchronization technigues we have

studied so far are essentially low level, like
semaphores.

« \What we would really like i1s a much higher-
level abstraction such as atomic transaction.

For example

e Atomic bank transactions:
1. Withdraw(amount, accountl)
2. Deposit(amount, account?)

Stable Storage

 Stable storage Is designed to survive anything
except major calamities such as floods and
earthquakes.

 Stable storage can be implemented with a pair
of ordinary disks.

 Stable storage is well suited to applications
that require a high degree of fault tolerance,
such as atomic transactions.

Stable storage Stable storage Stable storage

Drive 1 S % s | & S %
0 h 0 h 0 h

: S a S a S a

() Stable storage (b) Crash after drive 1 is updated g gaq spot

Transaction Primitives

BEGIN_TRANSACTION: Mark the start of a transaction.
END_TRANSACTION: Terminate the transaction and try to commit.
ABORT_TRANSACTION: Kill the transaction; restore the old values.
READ: Read data from a file (or other object).

WRITE: Write data to a file (or other object).

o D w N PP

For example,

BEGIN_TRANSACTION
reserve Austin-Houston;
reserve Houston-Los Angeles;
reserve Los Angeles-Seatle;

END_TRANSCATION

Properties of Transactions

« 1 Atomic: To the outside world, the
transaction happens indivisibly.

e 2 Consistent: The transaction does not
violate system Invariants.

e 3 |solated: Concurrent transactions do not
Interfere with each other.

4 Durable: Once a transaction commits,
the changes are permanent.

Isolated or serializable

* |solated or serializable means that if two or
more transactions are running at the same
time, to each of them and to other processes,
the final result looks as though all transactions
ran sequentially in some (system dependent)
order.

BEGIN_TRANACATION
X=0;

X=X+1;

END TRANSACTION
(@)
BEGIN_TRANSACTION
X=0;

X= X+2;

END TRANSACTION
(b)
BEGIN_TRANSACTION
X=0;

X=X+3;

END TRANSACTION
(c)

An example

Schedule 1 X=0; x=x+1; X=0; x=x+2; X=0; X=X+3; legal
Schedule 2 X=0; x=0; x=X+1; x=x+2; X=0; X=X+3; legal
Schedule 3 X=0; x=0; x=x+1; Xx=0; X=X+2; X=X+3; Illegal

Nest Transactions

e Transactions may contain subtransactions,
often called nested transactions.

o If the subtransaction commits and the parent
transaction aborts, the permanence applies
only to top-level transactions.

Implementation

* Private Workspace

Private workspace

Inglex

Index Index | || 0" | 0

0 0 |i|lid L

1 1 \ 2 ! 2

2 2 2
112][0 ll21]o 11
0’ 3|+ 0
\/ \/

 Writeahead log

x=0;

y=0;

BEGIN_TRANSACTION

X=X+1; log: x=0/;

y=y+2; log: x=0/1; y=0/2;

X=y *y; log: x=0/1; y=0/2; x=1/4,

END_TRANSACTION

Achieving atomic commit in a
distributed system

e Two-Phase Commit Protocol

Coordinator

Phase]

Collect all replies

Write “Prepare” in the log
Send “Prepare” message

Subordinates

Write “Ready” in the log
Send “Ready” message

Phase 2

Write log record (if all are rea
Send “Commit” message

ot, abort)

Write “Commit” in the log
Commit
-Send “Finished” message

Concurrency Control

* \When multiple transactions are executing
simultaneously In different processes, some
mechanism Is needed to keep them out of
each other’s way. That mechanism is called a
concurrency control algorithm.

N X

Concurrency control algorithms

Locking

In the simplest form, when a process needs to read
or write a file (or other object) as part of a
transaction, it first locks the file.

Distinguishing read locks from write locks.

The unit of locking can be an individual record or
page, a file, or a larger item.

* Two-phase locking

v The process first acquires all the locks it needs during
the growing phase, then releases them during the
shrinking phase.

v" In many systems, the shrinking phase does not take
nlace until the transaction has finished running and
nas either committed or aborted. This policy is called
strict two-phase locking.

Two-phase locking

Lock point

1
Growing phase e Shrinking phase
1

Number
of locks

Time

e Optimistic Concurrency Control

A second approach to handling multiple
transactions at the same time is optimistic
concurrency control. The idea Is simple: just
go ahead and do whatever you want to,
without paying attention to what anybody
else Is doing. If there Is a problem, worry
about It later.

e Timestamps

TRD TWR T
(@ |@ |®

Do tenative
write
TWR TRD T

(@ @ |®

Do tentative
write

Write

T

r(v)

-
)

T Twr
® |

Abort

Abort

Read

T

WR T T T R
o @ | ®)) w((v) Abort

T T;

R Nt T ! ENT
Wait (@ | | (B) ® |6 Abort

THRASHING

 If a process does not have “enough” pages,
the page-fault rate is very high
— low CPU utilization
— OS thinks It needs increased multiprogramming
— adds another process to system

« Thrashing Is when a process Is busy swapping
pages In and out

CPU
utilization

Thrashing

degree of muliprogramming

Cause of Thrashing

 Why does paging work?
— Locality model

. process migrates from one locality to another
- localities may overlap

* Why does thrashing occur?
— sum of localities > total memory size

 How do we fix thrashing?
— Working Set Model
— Page Fault Frequency

HETEROGENOUS DSM

e The design, implementation, and performance of
heterogeneous distributed shared memory
(HDSM) are studied. A prototype HDSM system
that integrates very different types of hosts has
been developed, and a number of applications of
this system are reported. Experience shows that
despite a number of difficulties in data
conversion, HDSM is implementable with minimal
loss In functional and performance transparency
when compared to homogeneous DSM systems

HETEROGENOUS DSM

Data conversicn - Data converted when a block 1s migrated
between two nodes

otructuring the DSM system as a collection of source
language objects

— Unit of data migration i1s object

— Usually objects are scalar data types, making system very
inefficient

Allowing only one type of data in a block
— Page size Is block size

- DsM ?age table keeps additional information identifying
type of data maintained in that page.

— Wastage of memory due to fragmentation

- As size of application level data structures differs for two
machines, mapping between pages on two machines
would not be one to one.

— Entire pages are converted even if small portion required
— Requires users to provide conversion routines.

RESOURCE MANAGEMENT

 In organizational studies, resource
management is the efficient and effective
development of an
organization's resources when they are
needed. Such resources may include
financial resources, inventory, human skills,
production resources, or information
technology (IT).

RESOURCE MANAGEMENT

e DIVIDED INTO TWO TECHNIQUES
1.LOAD BALANCING APPROACH
2.LOAD SHARING APPROACH

Load-balancing approach

Type of dynamic load-balancing algorithms

e Centralized versus Distributed

— Centralized approach collects information to
server node and makes assignment decision

— Distributed approach contains entities to make
decisions on a predefined set of nodes

— Centralized algorithms can make efficient
decisions, have lower fault-tolerance

— Distributed algorithms avoid the bottleneck of
collecting state information and react faster

Load-balancing approach

Type of distributed load-balancing algorithms

« Cooperative versus Noncooperative

— In Noncooperative algorithms entities act as
autonomous ones and make scheduling decisions
Independently from other entities

— In Cooperative algorithms distributed entities
cooperatewith each other

— Cooperative algorithms are more complex and
Involve larger overhead

— Stability of Cooperative algorithms are better

Load-sharing approach

» Drawbacks of Load-balancing approach

— Load balancing technique with attempting equalizing the workload on
all the nodes is not an appropriate object since big overhead is
generated by gathering exact state information

— Load balancing is not achievable since number of processes in a node
Is always fluctuating and temporal unbalance among the nodes exists
every moment

 Basic ideas for Load-sharing approach

— It is necessary and sufficient to prevent nodes from being idle while
some other nodes have more than two processes

— Load-sharing is much simpler than load-balancing since it only
attempts to ensure that no node is idle when heavily node exists

— Priority assignment policy and migration limiting policy are the same
as that for the load-balancing algorithms

Load estimation policies

for Load-sharing algorithms

e Since load-sharing algorithms simply attempt to
avoid idle nodes, it is sufficient to know whether a
node Is busy or idle

e Thus these algorithms normally employ the simplest
load estimation policy of counting the total number
of processes

e In modern systems where permanent existence of
several processes on an idle node Is possible,
algorithms measure CPU utilization to estimate the
load of a node

Location policies I,

for Load-sharing algorithms

e Location policy decides whether the sender node or the
receiver node of the process takes the initiative to search for
suitable node in the system, and this policy can be the

following:
— Sender-initiated location policy

» Sender node decides where to send the process
» Heavily loaded nodes search for lightly loaded nodes

— Recelver-initiated location policy
» Receiver node decides from where to get the process
* Lightly loaded nodes search for heavily loaded nodes

PROCESS MANAGEMENT

Three important concepts are used to achieve this
goal:

-Processor allocation
-Process migration
-Threads 2

135

PROCESS MANAGEMENT

Process allocation deals with the process of
deciding which process should be assigned to which
processor.

Process migration deals with the movement of a
process from its current location to the processor to
which it has been assigned.

Threads deals with fine-grained parallelism for
better utilization of the processing capability of the
system. ;

136

PROCESS MANAGEMENT

e Process Migration refers to the mobility of
executing (or suspended) processes In
a distributed computing environment. Usually,
this term Indicates that a processuses a
network to migrate to another machine to
continue Its execution there.

PROCESS MANAGEMENT

Machine S Machine D

(b} After migration

PROCESS MANAGEMENT

Mechanism

Freezing
time

Souroe
node

Tima

Exacution
suspended

Process P, in
exeqution

Destination
noda

Transter af
artiral

Execution
resymed

Promess P‘ in
expoution

Process migration mechanism

139

THREAD

e Multithreading. Multithreading Is mainly
found In multitasking operating systems.
Multithreading Is a widespread programming
and execution model that allows multiple
threads to exist within the context of one
process. These threads share the process's
resources, but are able to execute
Independently.

THREAD

Multithreading (computer

architecture)
Process

Time

141

THREAD

Process

Thread 1 File Handles
Process Pipes
B Thread 2
address - Semaphores
space

Signal Handlers
Thread N

THREAD

e Responsiveness: multithreading can allow an
application to remain responsive to input. In a one-
thread program, if the main execution thread blocks on
a long-running task, the entire application can appear
to freeze. By moving such long-running tasks to
a worker thread that runs concurrently with the main
execution thread, it is possible for the application to
remain responsive to user input while executing tasks
In the background. On the other hand, in most cases
multithreading is not the only way to keep a program
responsive, with non-blocking /0 and/or UniX
signals being available for gaining similar results

THREAD

e Faster execution: this advantage of a
multithreaded program allows It to operate
faster on computer systems that have
multiple central processing units (CPUs) or
one or more multi-core processors, or across
a clusterof machines, because the threads of
the program naturally lend themselves to
parallel execution, assuming sufficient
Independence (that they do not need to wait
for each other).

THREAD

 Parallelization: applications looking to use
multicore or multi-CPU systems can use
multithreading to split data and tasks into parallel
subtasks and let the underlying architecture
manage how the threads run, either concurrently
on one core or in parallel on multiple cores. GPU
computing environments
like CUDA and OpenCLuse the multithreading
model where dozens to hundreds of threads run
In parallel across data on a large number of cores.

UNIT -1V

OVERVIEW OF SHARED
MEMORY

CONSISTENCY MODEL

A memory consistency model only applies to
systems that allow multiple copies
ofshared data; e.g., through caching....

Other aspects include the order in which a
processor Issues memory operations to
the memory system, and whether a write
executes atomically.

CONSISTENCY MODEL

In describing the behavior of these memory models, we are only interested in the shared memory behavior - not
anything else related to the programs. We aren't interested in control flow within the programs, data
manipulations within the programs, or behavior related to local (in the sense of non-shared) variables. There is a
stnadard notation for this, which we'll be using in what follows.

In the notation, there will be a line for each processor in the system, and time proceeds from left to right. Each
shared-memory operation performed will appear on the processor's line. The two main operations are Read and
Write, which are expressed as

W(var)value which means "write value to shared variable var", and

R(var)value which means "read shared variable var, obtaining value."

So, for instance, W(x)1 means "write a 1 to x" and R(y)3 means "read y, and get the value 3."

More operations (especially synchronization operations) will be defined as we go on. For simplicity, variables are
assumed to be initialized to 0.

Animportant thing to notice about this is that a single high-level language statement (like x = x + 1;) will typically
appear as several memory operations. If x previously had a value of 0, then that statement becomes (in the
absence of any other processors)

P1: R(X)0 W(X)1 ------=--=-------

On a RISC-style processor, it's likely that C statement would have turned into three instructions: a load, an add,
and a store. Of those three instructions, two affect memory and are shown in the diagram.

On a CISC-style processor, the statement would probably have turned into a single, in-memory add instruction.
Even so, the processor would have executed the instruction by reading memory, doing the addition, and then
writing memory, so it would still appear as two memory operations.

Notice that the actual memory operations performed could equally well have been performed by some
completely different high level language code; maybe an if-then-else statement that checked and then set a flag. If
| ask for memory operations and there is anything in your answer that looks like a transformation or something of
the data, then something is wrong!

CONSISTENCY MODEL

Strict Consistency

The intuitive notion of memory consistency is the strict consistency model. In the strict model, any read to
a memory location X returns the value stored by the most recent write operation to X. If we have a
bunch of processors, with no caches, talking to memory through a bus then we will have strict consistency.
The point here is the precise serialization of all memory accesses.

We can give an example of what is, and what is not, strict consistency and also show an example of the
notation for operations in the memory system. As we said before, we assume that all variables have a value

of 0 before we begin. An example of a scenario that would be valid under the strict consistency model is the
following:

P1: W(X)1 ------------mmmmm - P2: R(X)1 R(x)1

This says, ~"processor P1 writes a value of 1 to variable x; at some later time processor P2 reads x and
obtains a value of 1. Then it reads it again and gets the same value"

Here's another scenario which would be valid under strict consistency:
P1: W(X)1 ----m-mmmmmmmmmm oo oo P2: R(X)0 R(x)1

This time, P2 got a little ahead of P1; its first read of x got a value of 0, while its second read got the 1 that
was written by P1. Notice that these two scenarios could be obtained in two runs of the same program on
the same processors.

Here's a scenario which would not be valid under strict consistency:
P1: W(X)1 ---------mmmmmmmmmemem P2: R(x)0 R(x)1

In this scenario, the new value of x had not been propagated to P2 yet when it did its first read, but it did
reach it eventually.

I've also seen this model called atomic consistency.

CONSISTENCY MODEL

Sequential Consistency

Sequential consistency is a slightly weaker model than strict consistency. It was defined by
Lamport as the result of any execution is the same as if the reads and writes occurred in
some order, and the operations of each individual processor appear in this sequence in
the order specified by its program.

In essence, any ordering that could have been produced by a strict ordering regardless of
processor speeds is valid under sequential consistency. The idea is that by expanding from the
sets of reads and writes that actually happened to the sets that could have happened, we can
reason more effectively about the program (since we can ask the far more useful question,
"could the program have broken?"). We can reason about the program itself, with less
interference from the details of the hardware on which it is running. It's probably fair to say
that if we have a computer system that really uses strict consistency, we'll want to reason
about it using sequential consistency

CONSISTENCY MODEL

The third scenario above would be valid under sequential consistency. Here's another scenario that would be valid under sequential
consistency:

PL: W(x)1

P R(LRM2
B RKOLRKZ
W2

PL: W(x)1
P2 R(x)1 R(x)2

CONSISTENCY MODEL

Here's a scenario that would not be valid under sequential consistency:

PL: W(x)1
S (01 R(x)2
o3 —

Oddly enough. the precise definition. as given by Lamport. doesn't even require that ordinary notions of causality be mamtained: it's possibl
to see the result of a write before the write itself takes place. as m:

This 15 valid because there 15 a different ordering which. m strict consistency, would vield P2 reading x as having a value of 1. This 1sn'ta
flaw mn the model; if vour program can indeed violate causality like this. vou're missing some svnchronization operations in vour program.
Note that we haven't talked about synchronization operations vet: we will soon.

SHARED MEMORY

 In computer science, distributed shared

memory(DSM) Is a form
of memory architecture where physically
separated memories can be addressed as one

logically shared address space.

SHARED MEMORY

Process Process | o Process
Invocation response response response
Invocation Invocation
Memory Memory Memory
................ manager

manager manager

Shared Virtual memory

Distributed shared memory

SHARED MEMORY

L] Fage based Dol

Cluster Computing

e Emulates a standard symmetrical shared
memory multi processor

* Always hardware supported to some extend
- May use customized hardware
- May rely only on the MMU

e Usually independent of compiler, but may
require a special compiler for optimal
performance

SHARED MEMORY

e Distribution methods are:
- Migration
- Replication
 Examples of Page based DSM systems are:
- vy
- Threadmarks
- CVM
- Shrimp-2 SVM

SHARED MEMORY

Memnet 1986

DASH 1989
r

Shrimp 1994

Emerald 1986

lvy 1986

Orca 1991

Shasta 1996

Threadmarks 1994

CVM 1996

SHARED MEMORY

..~ Three example DSM systems

* Orca
Object based language and compiler
sensitive system

e Linda
Language independent structured memory
DSM system

e IVY
Page based system

SHARED MEMORY

* The first page based DSM system

* No custom hardware used - only depends on
MMU support

* Placed in the operating system
 Supports read replication

* Three distribution models supported
* Central server
* Distributed servers
* Dynamic distributed servers

* Delivered rather poor performance

SHARED MEMORY
i vy

Cluster Computing

* Advantages Disadvantages
= Wonew fanguags - Exhibits trashing
introduced

- Fully transparent - Poor performance

— Virtual machine is a
perfect emulation of
an SMP architecture

— Existing parallel
applications runs
without porting

SHARED MEMORY

HI- VY Status

ster Computing

e Dead!

e New SOA is Shrimp-2 SVM and CVM

- Moved from kernel to user space

- Introduced new relaxed consistency
models

- Greatly improved performance

- Utilizing custom hardware at firmware
level

VARIABLE BASED SHARED MEMORY
T T Variable based DSM

Zluster Computing

Delivers the lowest distribution granularity
Closely integrated in the compiler

May be hardware supported

Possible distribution models are:

- No migration

- Demand migration

- Replication

Variable based DSM systems have never
really matured into systems

VARIABLE BASED SHARED MEMORY

INAa

=r Computing

* Tuple based
* Language independent

 Targeted at MPP systems but often used in
NOW

e Structures memory in a tuple space

(YPerson”, “Doe”, “John”, 23, 82, BLUE)
(Ypa”,; 3.141592)
(“grades”, 96, [Bm, A, Ap, Cp, D, Bpl)

VARIABLE BASED SHARED MEMORY

) Linda

2r Computing

* Linda consists of a mere 3 primitives
* out - places a tuple in the tuple space
* in - takes a tuple from the tuple space
* read - reads the value of a tuple but leaves it in the
tuple space
* No kind of ordering is guarantied, thus no
consistency problems occur

VARIABLE BASED SHARED MEMORY

L.l Linda
e Advantages Disadvantages
- No new language - Many applications
introduced are hard to port
- Easy to port trivial — Fine grained
producer- parallelism is not
consumer efficient

applications
— Esthetic design

- No consistency
problems

VARIABLE BASED SHARED MEMORY

TH Linda Status

Cluster Computing

 Alive but low activity
* Problems with performance
e Tuple based DSM improved by PastSet:
- Introduced at kernel level
- Added causal ordering
- Added read replication
- Drastically improved performance

OBJECT BASED SHARED MEMORY

T Object based DSM

uster Computing

- Emerald

Probably the simplest way to implement DSM
Shared data must be encapsulated in an
object

Shared data may only be accessed via the
methods in the object

Possible distribution models are:

— No migration

- Demand migration

- Replication

Examples of Object based DSM systems are:

~ Shasta
— Orca

OBJECT BASED SHARED MEMORY

L. o] UIcd

luster Computing

e Three tier system
e Language
e Compiler
* Runtime system

e Closely associated with Amoeba

aaaaa

 Not fully object orientated but rather object

based

OBJECT BASED SHARED MEMORY

] Orca

Cluster Computing

e Claims to be be Modula-2 based but behaves
more like Ada

* No pointers available

* Includes both remote objects and object
replication and pseudo migration

o Efficiency is highly dependent of a physical
broadcast medium - or well implemented
multicast.

OBJECT BASED SHARED MEMORY
Orca

=r Computing

e Advantages Disadvantages
- Integrated operating

- Integrated :

- system, compiler and
opera_tmg system, runtime environment
compiler and makes the system
runtime less accessible
environment - Existing application
ensures stability may prove difficult to

- rt
- Extra semantics =

can be extracted
to achieve speed

OBJECT BASED SHARED MEMORY

LB Orca Status

Computing

» Alive and well
» Moved from Amoeba to BSD

» Moved from pure software to utilize custom
firmware

» Many applications ported

UNIT -V

FILE MODELS

FILE ACCESS
Accessing remote files

remote file
® Remote service model

® Data {*atching model

FILE ACCESS

Remote service model

@ Processing ol client request is performed at server’s node

® Client request is delivered to server and server machine
performs on it and returns replies to client

@ Request and replies transferred across network as message

® File server interface and communication protocol must be
designed carefull y 0 as to minimize the overhead of
generating the messages

® Every remote file access results in traffic

FILE ACCESS

Data catching model

® Reduced the amount of network traffic by taking advantage
of locality feature

®If requested data is not present locally then copied it from
server's node to client node and L'atching there

® LRU is used to keep the cache size bounded

® Cache Consistency prubltm

FILE ACCESS

Unit of data transfer

® Refers to fraction of file data that is transferred to and from
client as a result of :-'ing]t: read write operation
® Four data transfer models
® File level transfer model
® Block level transfer model
® Byte level transter model

® Record level transfer model

FILE SHARING

File level transfer model

® When the operation required file data, the whole file is
moved
® Advantages are
® Efficient because network protocol overhead is required only
once
® Better m;alahili[}' because it l"L'l.ll.ii['L‘H fewer access to file server
and reduce server load and network trathic
® Disk access routines on server can be better nptitniznl
® Offers dcgruu of]'t_‘h'“il:l'l{_‘j.' to server and network failure
® Drawbacks is it requires sufficient storage space

® Ex are amoceba, CFS, Andrew file system

FILE SHARING

Block level transfer model

® file data transfer take place in units of data blocks

® A file block is contiguous portion of file and fixed in lcngth

® Ad vantage is does not required large storage space

® Drawback is more network traffic and more network
protocol overhead

® poor pr:rﬁ}rma nce

® Ex are Sun microsystem’s NFS, Apollo domain file system

FILE SHARING

Byte level transfer model

® File data transfer take place in units of bytes
® Provides maximum flexibility

® Difficulty in cache management

FILE SHARING

Record level transfer model

® Suitable with structured files
® File data transfer take place in unit of records

® Ex. RSS(research storage system)

FILE CACHING

* (Caching is based on the idea of replicating frequently accessed
data items in lower latency storage units:

— performance is the main goal here. ..
— ... but caches can also provide better availabilty, resource utilization. ..

» Caches are widely employed at a wide variety of levels:

Hardware: Software:
—(Mult1) Processor caches: —(Distributed) File Systems:
«SRAM vs DRAM *Main Memory vs Disk

¢|.ocal FS vs Remote FS

—World Wide Web:

*browser vs forward/reverse proxy vs

«[.ocal SRAM vs Remote SRAM/DRAM

—Disk Caches: Web Server RAM vs Web Server Disk
*RAM vs Disk —(Distributed) Database Systems:
*RAM vs Disk

| .ocal DBMS vs Remote DBMS

FILE CACHING

Distributed Cache Systems

Locality principles still drive the design process, just like in the
non distributed case. ..

... but now distribution raises a number of additional issues...
— high/unpredictable communication latency:
» we don’t want highly/unpredictable inconsistent caches!
— possibility for cooperation among caches, but...
— ...need for system autonomy despite single caches failures
— mutual effect of mutliple caching tiers on actual miss rates:
« trickle-down effect
— trackability:
* how many hits on my web page?
— security. just like in any distributed data replication scheme

FILE CACHING

» The consistency requirements play a fundamental role in the
design of a distributed cache management scheme. ..

» Discussing the manifold formal consistency models presented in
literature 1s out of the scope of this course - you’re already
seeing them in the Distributed Systems course.

» We’ll rather take a pragmatical approach and analyze two case
studies representative of weak and strong consistency
constraints:

— WWW Caching
— Transactional Caching

FILE CACHING

Web Caching

Simplest model:
 clients are read-only, only server updates data
 content staleness is tolerated

- - -

response

-reques.r - = -

response response

FILE CACHING

Why Web Caching?

e Cost

« Original motivation for adopting caches (esp. internationally)
+ Caching saves bandwidth (bandwidth is expensive)
+ 90% byte hit rate cuts bandwidth costs in half

« Performance
+ User: Reduces latency
» RTT to cache lower than to server
+ Server: Reduces load
» Caches filter requests to server
+ Network: Reduces load
» Requests that hit in the cache do not travel all the way to server

FILE CACHING
Proxy Caching

« Proxy caching is one of the most common methods
used to improve Web performance

+ Duplicate requests to the same document served from cache
+ Hits reduce latency, b/w, network utilization, server load

+ Misses increase latency (extra hops) S
Hits / .E S
]
Misses | Misses : ‘E - E

Clients Proxy Cache Servers

FILE CACHING

Where to cache’?

request
dispatcher
v A
—o- @
»

e

CDN
SErvers

(reverse)
browser (forward) Proxy Web
caches PIOXY caches Server

caches G

FILE CACHING
Cache Misses

* There are a number of reasons why requests miss:

— Compulsory (50%)

* Object uncacheable (20%)

« First access to an object (30%)
— Capacity (<5%)

» Finite resources (objects evicted, then referenced again)
— Consistency (10%)

« Objects change (“../today”) or die (deleted)

FILE REPLICATION

There are three basic replication models the
master-slave

client-server

peer-to-peer models.

FILE REPLICATION

 Master-slave model

In this model one of the copy Is the master replica and
all the other copies are slaves. The slaves should always
be Iidentical to the master. In this model the
functionality of the slaves are very limited, thus the
configuration is very simple. The slaves essentially are
read-only. Most of the master-slaves services ignore all
the updates or modifications performed at the slave,
and “undo” the update during synchronization, making
the slave identical to the master [3]. The modifications
or the updates can be reliably performed at the master
and the slaves must synchronize directly with the
master.

FILE REPLICATION

2.3.2 Client-server model

The client-server model like the master-slave designates one server, which serves
multiple chents. The functionality of the clhients in this model 1s more complex than that
of the slave in the master-slave model. It allows multiple inter-communicating servers, all
types of data modifications and updates can be generated at the client. One of the
replication systems in which this model 1s successfully implemented 1s Coda. Coda is a
distributed file system with its origin in AFS2. It has many features that are very
desirable for network file systems [9]. Optimistic replication can use a client-server
model. In Chient- server replication all the updates must be propagated first to the server,
which then updates all the other clients. In the client-server model, one replica of the data
1s designated as the special server replica. All updates created at other replicas must be
registered with the server before they can be propagated further. This approach simplifies
replication system and limits cost, but partially imposes a bottleneck at the server [11].
Since all updates must go through the server, the server acts as a physical synchronization
point [13]. In this model the conflicts which occur are always be detected only at the
server and only the server needs to handle them. However, if the single server machine
fails or 15 unavailable, no updates can be propagated to other replicas. This leads to un-
consistency as individual machines can accept their local updates, but they cannot learn
of the updates applied at other machines.

In a mobile environment where connectivity 1s limited and changing, the server may be
difficult or impossible to contact, while other client replicas are simple and cheap to
contact. The peer model of optimistic replication can work better in these conditions [13].

FILE REPLICATION

Peer-to-peer model The Peer-to-peer model is very different from both the master-slave and
the client-server models. Here all the replicas or the copies are of equal importance or they are
all peers. In this model any replica can synchronize with any other replica, and any file system
modification or update can be applied at any replica. Optimistic replication can use a peer-to-
peer model. Peer-to-peer systems allow any replica to propagate updates to any other replicas
[11]. The peer-to-peer model has been implemented in Locus, Rumor and in other distributed
environments such as XFS in the NOW project. Peer-to-peer systems can propagate updates
faster by making use of any available connectivity. They provide a very rich and robust
communication framework. But they are more complex in implementation and in the states
they can achieve [11]. One more problem with this model is scalability. Peer models are
implemented by storing all necessary replication knowledge at every site thus each replica has
full knowledge about everyone else. As synchronization and communication is allowed
between any replicas, this results in exceedingly large replicated data structures and clearly
does not scale well. Additionally, distributed algorithms that determine global state must, by
definition, communicate with or hear about (via gossiping) each replica at least once and
often twice. Since all replicas are peers, any single machine could potentially affect the
outcome of such distributed algorithms; therefore each must participate before the algorithm
can complete, again leading to potential scaling problems [3]. Simulation studies in the file
system arena have demonstrated that the peer model increases the speed of update
propagation among a set of replicas, decreasing the frequency of using an outdated version of
the data

FAULT TOLERANCE

 Fault tolerance is the property that enables
a system to continue operating properly in the event
of the failure of (or one or more faults within) some
of Its components.

FAULT TOLERANCE

Ability of a system to continue functioning in the
event of a partial failure.

Though the system continues to function but overall
performance may get affected.

Distributed systems are made up of a large number
of components, developing a system which is
hundred percent fault tolerant is practically very
challenging.

Two main reasons for the occurrence of a fault
1)Node failure -Hardware or software failure.
2)Malicious Error-Caused by unauthorized Access.

FAULT TOLERANCE

4.Fault Tolerance Techniques

Replication Check Pointing

* Creating multiple copies or * Saving the state of a system

replica of data items and

storing them at different
sites

Main idea is to increase the
availability so that if a node
fails at one site, so data can
be accessed from a different
site.

Has its limitation too such
as data consistency and
degree of replica.

when they are in a
consistent state and storing
it on a stable storage.

Each such instance when a
system is in the stable state
is called a check point.

In case of a failure, system is
restored to its previous
consistent state.

» Saves useful computation.

FAULT TOLERANCE

* Fault Tolerance is needed in order to provide 3 main
feature to distributed systems.

1)Reliability-Focuses on a continuous service with
out any interruptions.

2)Availability - Concerned with read readiness of the
system.

3)Security-Prevents any unauthorized access.

+ examples-Patient Monitoring systems, flight control
systems, Banking Services etc.

NETWORK FILE SHARING

* A Network File System (NFS) allows remote hosts to
mount file systems over a network and interact with
those file systems as though they are mounted locally.
This enables system administrators to consolidate
resources onto centralized servers on the network.

 This chapter focuses on fundamental NFS concepts and
supplemental information. For specific instructions
regarding the configuration and operation of NFS
server and client software, refer to the chapter
titled Network File System (NFS) in the Red Hat
Enterprise Linux System Administration Guide.

NETWORK FILE SYSTEM

Required Services

Red Hat Enterprise Linux uses a combination of kernel-level support and daemon processes to provide NFS file
sharing. NFS relies on Remote Procedure Calls (RPC) to route requests between clients and servers . RPC services
under Linux are controlled by the portmap service. To share or mount NFS file systems, the following services work
together:

nfs — Starts the appropriate RPC processes to service requests for shared NFS file systems.

nfslock — An optional service that starts the appropriate RPC processes to allow NFS clients to lock files on the
server.

portmap — The RPC service for Linux; it responds to requests for RPC services and sets up connections to the
requested RPC service.

The following RPC processes work together behind the scenes to facilitate NFS services:

rpc.mountd — This process receives mount requests from NFS clients and verifies the requested file system is

currently exported. This process is started automatically by the nfs service and does not require user
configuration.

rpc.nfsd — This process is the NFS server. It works with the Linux kernel to meet the dynamic demands of NFS
clients, such as providing server threads each time an NFS client connects. This process corresponds to
the nfs service.

rpc.lockd — An optional process that allows NFS clients to lock files on the server. This process corresponds to
the nfslock service.

rpc.statd — This process implements the Network Status Monitor (NSM) RPC protocol which notifies NFS clients
when an NFS server is restarted without being gracefully brought down. This process is started automatically by
the nfslock service and does not require user configuration.

rpc.rquotad — This process provides user quota information for remote users. This process is started
automatically by the nfs service and does not require user configuration.

NETWORK FILE SYSTEM

* Troubleshooting NFS and portmap

e Because portmap provides coordination between
RPC services and the port numbers used to
communicate with them, it is useful to view the
status of current RPC services
usingportmap when troubleshooting.

The rpcinfo command shows each RPC-based
service with port numbers, an RPC program
number, a version and an IP protocol type (TCP or
UDP).

